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PREFACE 

Phosphorus ligands are of a wide range of sizes and basicities. The 

size of phosphorus ligands can vary from small constrained bicyclic 

phosphites of the type P(0CH2)3CR to very bulky 2,6 disubstituted 

triarylphosphines. The basicity of phosphorus ligands ranges from 

P(;^-Bu)3, the most basic phosphine as shown by comparison of the CO 

stretches in NifCOjgL complexes, to PFg which has a basicity comparable to 

CO. The research described in this dissertation involves the study of the 

consequences of steric size and lone pair basicity on the relative extent 

of coordination of phosphorus ligands toward silver(I) and on the ligand 

field in [Co(P)g]^* complexes where P is a phosphorus donor. In addition, 

the effect of the symmetry of the phosphorus ligands on the electric field 

gradient at Co in [Co(P)g]3^ complexes is investigated. 

A list of phosphorus ligands discussed in this dissertation is 

included in Table 1. 
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Table 1. Phosphorus compounds discussed in this dissertation 

PF3 ii P(0-2,6-CgH3Me2)3 

P(0Et)3 ii CH3OPOCH2C{CH3)2CH26 

2 P(2.-toly1 )3 ii P(OCH2)2CH6 

4_ P(t-Bu)3 il Me0P0CH2CH20 

5_ P(2.4,6-C6H2Me3)3 iâ P(CH3)3 

P(n.-Bu)3 ii P(i-Pr)3 

1_ P(NMe2)3 _30 o_-(P (01^6)2)2^6^4 

_8 P(NH2)3 31_ o^-(P(0Et)2)2C6H4 

2 . P(0Me)3 _32 (CH3)2PCH2CH2P(CH3)2 

P(0CH2CH2C1)3 ii PhP(0Et)2 

il P(0Ph)3 ii PPhCl2 

JL2 PPh3 ii PEtC.12 

ii P(0-O;-toly1 )3 _36 CI2PCH2CH2PCI2 

ii PEt3 iZ. C1P0CH2CH20 

ii PMe2Ph ii Et0P0CH2CH20 

ii PMePh2 ii n_-Pr0P0CH2CH20 

IZ. PfOCHgisCCgHs ii n-Bu0P0CH2CH20 

ii P(0CH2)3CCH3 iL j_-Pr0P0CH2CH20 

ii P{NCH^CH2)3 ii j_-Bu0P0CH2CH20 

20 P(0CH2CCl3)3 ii sec-BuOPOCHpCHpO 

ii P(0CH(CH3)2)3 ii ^-Bu0P0CH2CH20 

li P(NMeCH2)3CCH3 ii Ph0P0CH2CH20 

_23 P(0-t-Bu)% ii CF3CH2OPOCH2CH2O 
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Table 1. Continued 

iL 0(CH2CH2)2NP0CH2CH20 11 Me0P0CH2CH2S 

iâ MeOPOCH^CHCHgO 11 PhOPOCHgCHgiS 

ii dl-meso-CTPOCHCHiCHCHiO li CgH/j,-_o_-02PCl 

dl^MeOPOCHCHgCHCHgO 11 C6H4~o-02P0Me 

dl^EtOPOCHCHgCHCHsO IL P{CH2CH2CN)3 

_^-n.-Pr0P0CHCH3CHCH30 11 (Me0)2PCH2CH2P(0Me)2 

11 ^^jPrOPOCHCHgCHCHgO 11 P(0CH)3(CH2)3 

ii MeOPOC(CH3)2C(CH3)2Ô Is
 

ÇH2O&OCH2CH2ÇH6 

li FPOCH2CH2O 71̂  ax-MeOPOCH(CH3)eqCH2CH(CH3)gqÔ 

li PhP0CH2CH20 21 eq-Me0P0CH(CH3)eqCH2CH{CH3)eqÔ 

11 EtP0CH2CH20 21 ax-MeOPOCH(CH3)eqCH2CH2Ô 

11 0C(NMeP0CH2CH2Ô)2 _74 ax-n.-PrOPOCH(CH3)eqCH2CH2Ô 

11 P(SMe)3 IL eq-MeOPOCH(CH3)eqCH2CH2Ô 

11 As(0Me)3 21 eq-Ji-Pr0P0CH(CH3)gqCH2CH20 

11 AS(0CH2)3CCH3 77^ Me0POCH2CH2CH2O 

li CIPOCH2CH2S _78 PPhH2 

11 Me0P(0CH2)2C(CH20)2P0Me 

11 P(0CH2)3CCH2Br 

81 meso-MeOPOCHPhCHPhO 
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PART I. COORDINATION OF PHOSPHORUS LIGANDS TO SILVER(I) 
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INTRODUCTION 

It has long been recognized that changing the substituents on 

phosphorus ligands can have profound influences on the properties of the 

free ligands as well as on their behavior as complexing agents. These 

changes can be of either a steric or an electronic nature. Until 1970, 

the properties of phosphorus ligands were discussed exclusively in terms 

of electronic considerations and steric effects were for the most part 

ignored (1). 

Electronic effects are manifested in the basicity of the phosphorus 

lone pair. In general, the basicity at the phosphorus lone pair decreases 

with increasing electronegativity of the substituents on phosphorus. That 

is, phosphines are more basic than aminophosphines which are more basic 

than phosphites which are more basic than The poor basicity of J^is 

such that the donor/acceptor properties of this ligand have been compared 

to that of CO. Experimental evidence for this comparison comes from the 

CO stretches in Mo(C0)g(J^)2 from which Cotton concluded that _1_ was a 

better ir acceptor than CO (2). Green and co-workers later reached this 

same conclusion on the basis of their interpretation of the photoelectron 

spectra of NiQ^)^ and Ni (00)4 (3). 

The electronic properties of phosphorus ligands can be compared in 

relation to a number of criteria based on either measurements of CO 

stretching frequencies in metal carbonyl complexes" or of phosphorus 

coupling constants. Tolman quantifies the donor/acceptor properties of 

phosphorus ligands by observing the CO stretch of Ni(00)31 complexes. 
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He defines the substituent additivity contribution for phosphorus 

ligands PX1X2X3 

3 
V = [2056.1 + x^] cm (1) 

where v is the Aj stretch of a Ni(00)31 complex (4). Protonation studies 

have also been used to study the relative basicity of phosphines and 

phosphites. The value of ^JPH has been related to the s character of the 

P-H bond (5). It has also been found that more basic phosphorus ligands 

have a smaller value of ^JPH due to the s electrons being more diffuse 

because of a smaller positive charge on phosphorus (6). For the same 
01 nn 

reasons P-"Se one-bond couplings in the corresponding selenides can be 

used as a measure of phosphorus basicity (7). A good correlation is seen 

between ^JPH in the protonated phosphorus ligand and in the 

corresponding selenophosphate (7). Moreover, values for the 

corresponding selenophosphates correlate very well with the B-H stretching 

frequencies in the analogous phosphite borane adducts (7). It has also 

been noted that a linear correlation exists between the electronegativity 

of the substituents on phosphorus and the ^J^^P-^^Se value of the 

corresponding selenophosphate (7). 

Recently, the importance of steric considerations in the coordination 

of phosphorus ligands has become recognized (1,8). Experiments conducted 

by Tolman demonstrated that the affinity of Ni(0) for phosphorus ligands 

is dominated by steric effects with electronic considerations being of 

little importance. For example, the positions of equilibria of the type 2 

below 
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NiLq + 4L' -^> NiL^_^L^' + (4-n)L' + nL (2) 

are a function of the steric size of L and L' with Ni(0) binding to 

smaller ligands preferentially (9). The extent of ligand dissociation in 

NiL^ complexes (Equation 3) was also found to be dependent on the 

NiL^ < ^ NiLg + L (3) 

size of L, with larger ligands dissociating to a greater extent (10). In 

another set of experiments a linear relationship was found between the 

degree of substitution of carbonyl groups from Ni(00)4 upon reaction of 

excess ligand in a sealed tube and the size of the ligands, with smaller 

ligands displacing CO to a greater extent (9). 

Since the ability of phosphorus ligands to compete for Ni(0) could 

not be adequately rationalized in terms of electronic properties but could 

be explained with steric arguments, it became desirable to quantitate 

these steric properties. Tolman defined the ligand cone angle, 0, for 

symmetric ligands as the apex angle of a cylindrical cone, centered 

2.28 A from the center of the phosphorus atom, which just touches the 

outermost substituent van der Waal s radii as shown in Figure 1. If there 

are internal degrees of freedom, the substituents are oriented to give a 

minimum cone angle (9). 

It was deemed of interest to compare the results obtained with Ni(0) 

complexes to that of a positively charged metal ion wherein electronic 

effects would be expected to be of greater importance. The silver(I) ion 
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Figure 1. The phosphorus ligand cone angle as defined by Tolman 
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is an excellent candidate for such a comparison. Compared to Ni(0), the 

silver(I) ion has a slightly larger radius in addition to possessing a 

positive charge (11). Both of these factors should make Ag(I) more 

sensitive to electronic compared to steric effects. 

Previous work has hinted that this may indeed be true. Muetterties 

found that ^ which is smaller but less basic than 2» competes about 

equally as well as ^ for Ag(I) (11). The role of steric effects in 

limiting the extent of coordination of phosphorus ligands to Ag(I) has 

also been demonstrated. Although ionic four-coordinate Ag(I) complexes of 

phosphorus ligands have long been known (11-16), it has been observed that 

large phosphine ligands do not form four-coordinate complexes with this 

metal ion. For example, only two molecules of ^ coordinate to Ag(I) 

either in the solid state or in solution (17). Likewise, a crystal 

structure determination of a two-coordinate complex of a large phosphorus 

ligand [Ag(^)2]PFg has been shown to be sterically crowded owing to 

inter!igand methyl group repulsions (18). 

The majority of silver(I) complexes of phosphorus ligands show a 

31 
temperature dependence in their P{H} NMR spectra. At room temperature, 

singlets are observed because the phosphorus atoms are decoupled from the 

silver atoms due to rapid intermolecular exchange. As the temperature is 

31 lowered, the exchange is frozen out and the P{H} NMR spectrum appears as 

a doublet of doublets. The doublet of doublet pattern results from the 

two silver nuclei at spin 1/2 which in nature are each approximately 50% 

abundant with p^^^Ag/p^^^Ag = 1.15 as seen in Table 2. 
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Table 2. NMR properties of nuclei 

Isotope Natural Abundance 
% 

Spin I Magnetogyric 
7 ratio , 1 

(y/lO rad T~ s~ ) 

Relative 
receptivity^ 

1H 99.985 1/2 26.7510 1.000 

13q 1.108 1/2 6.7263 1.59 X 10-2 

31p 100.0 1/2 10.829 6.64 X 10-2 

lO'Ag 51.82 1/2 -1.0835 6.69 X 10-5 

lOSkg 48.18 1/2 -1.2449 1.01 X 10-4 

®For equal number of nuclei at constant field. 

The magnitude of Ag-P coupling is dependent on the coordination 

number of Ag(I) as well as the electronegativity of the substituents 

attached to phosphorus. This is to be expected from theory. Following 

the method of Pople and Santry, the Fermi contact term for spin-spin 

coupling between two nuclei A and B is given by 

where k is a constant for the group of compounds in question, the a 

factors represent the localized hybrid bond s-character in a valance bond 

description, the and |tpg(0)| terms refer to the s-electron 

3 
densities at the nucleus of A and B and AE is the singlet triplet 

excitation energy (19,20). A reduced coupling constant Ky^g which is 
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independent of the nuclear magnetic moments of A and B can be defined by 

K^B = TA^b^'^AB (5) 

where and Yg are the magnetogyric ratios of A and B (21). For the 

remainder of this work only J couplings will be discussed. Equation 4 

predicts that one-bond phosphorus couplings should increase upon placing 

more electronegative groups on phosphorus since a larger positive charge 

on phosphorus will tend to increase Up(0)1. Indeed, an increase of 

phosphorus coupling constants with increasing electronegativity of the 

substituents on phosphorus has been previously noted in P-C, P-H, P=Se, 

P-W and P=0 couplings (22). Likewise, the Ag-P coupling for Ag(I) 

complexes of phosphite ligands has been shown to be greater than for 

phosphine ligands of the same stoichiometry (11). As n increases in AgL^X 

where X can be either a coordinating or a noncoordinating anion, silver-

phosphorus coupling decreases due to the decrease in s character in the 

silver hydridization (11,23,24). In fact, plots of ^JAg-P vs^1/n for 

[Ag(^)n]'*", [Ag(3_)n]"^ and [Ag(£)p]"^ (n.= 2-4) are nearly linear (23). 

During the course of this study, the crystalline compound 

[Ag(7_)2]BPh4 was isolated. Since this compound appeared to be a unique 

example of a complex whose ligands do not sterically demand an apparent 

coordination number of two, an x-ray crystal and molecular structural 

investigation was undertaken to determine if coordination of the anion was 

perhaps involved. Such a study also offered the opportunity to compare 

the conformations of ligand 2.in a monovalent metal complex with those in 

zero-valent iron complexes reported earlier (25,26). 
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The preferred conformation of tris(dialky1amino)phosphines has been a 

topic of recent interest. Of the five conformations which have been 

proposed for these molecules (A-E in Figure 2), the two that have drawn 

theoretical support for being the most stable are structures C and D. 

Recent ab initio molecular orbital calculations on ^ suggest that C 

represents the most stable conformation with only a slight energy 

difference between this structure and D (26). The same conclusion was 

reached in an MNDO study of _7. (27). Unfortunately, ^ exists only as its 

borane adduct (28,29) and most uncomplexed acyclic tris(dialkylamino)-

phosphines such as 2.are liquids at room temperature which become glasses 

at low temperature. Recently, however, a number of structures have 

appeared of coordinated 7^ (25,26) or of larger systems containing the PNg 

moiety (30-36). In these structures, the aminophosphines adopt 

conformations closely resembling either C or D. For example, the ligand 

in Fe(7_)(C0)4 adopts conformation C (25) as does one of the ligands in 

trans-Fe(7)2(C0)3 (26). The second ligand in the latter complex possesses 

the symmetry of D. A common phenomenon observed in these structures is 

that one of the nitrogens is more pyramidal than the remaining two. The 

P-N bond to the more pyramidal nitrogen is the longest of the three 

presumably due to the presence of less s character. This trend appears to 

be more pronounced in ligands having the Cg symmetry of D. It is thought 

that the presence of three electron donating NRg groups renders phosphorus 

insufficiently electronegative to maintain planarity in all three 

nitrogens (37). Support of this postulate comes from structural data of 

0P(NR2)3 molecules. As expected, the nitrogens are more planar in 
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CO 

A (C^y) 

B (C3V) 

C (C3) 

0 (C,) 

E (CJ 

Figure 2. Some possible conformations of tris(dialkylamino)phosphines 
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0P[N(CH2CH2)20]3 than in SeP[N(CH2CH2)20]3 wherein the phosphorus is less 

electronegative (33). In the weak adduct formed from 0P(NMe2)3 and 

SAsMePh2. the aminophosphine derivative adopts the propeller-like 

conformation C with essentially planar nitrogens and equal phosphorus-

nitrogen bond lengths (32). 

Coordination number 2 is quite uncommon for metal complexes and it is 

largely limited to relatively few compounds of monovalent copper, silver 

and gold and of divalent mercury (38). The only previously reported 

structure of Ag(I) complexed to two phosphorus ligands in a two coordinate 

cation is [Ag(^)2]PFg (18). A comparison of the Ag-P bond lengths in 

[Ag(^)2]PFg and [Ag(2)2]BPh^ is of interest since 7_is less sterically 

demanding, but it is also less basic than_5. 

It will be shown in this section that in contrast to Ni(0) wherein 

the coordination properties of phosphorus ligands are determined mainly by 

steric consideratons, electronic effects gain importance in the Ag(I) 

system. Likewise, it will be shown that the extent of coordination of 

phosphorus ligands to Ag(I) can be limited by poor phosphorus lone pair 

basicity in addition to large steric size. 
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EXPERIMENTAL 

Procedures 

Melting points were measured on a Thomas-Hoover capillary melting 

point apparatus and are uncorrected. Conductivities were measured with an 

Industrial Instruments Inc. Model RA 16B2 conductivity bridge. 

(89.55 MHz) and (22.5 MHz) NMR spectra were obtained with a JEOL FX-

90Q spectrometer operating in the FT mode while locked on the resonance 

of deuterated solvents and were referenced to internal Me^Si. All and 

NMR spectra were recorded at ambient temperatures unless otherwise 

indicated. The ^^P NMR spectra were obtained with either a Bruker HX-90 

spectrometer operating at 36.44 MHz or a Bruker WM-300 spectrometer 

operating at 121.51 MHz in the FT mode while locked on the ^H resonance of 

a deuterated solvent. The external standard was PCI3 (219.4 ppm) and the 

chemical shifts are reported with respect to 85% H3PO4. All ^^P NMR 

samples were run in 75% CH2Cl2/25% dg-acetone at -95° unless stated 

otherwise. Spectra of silver complexes which were later run unlocked in 

100% CH2CI2 showed essentially the same values of ^JAg-P and chemical 

shifts. Molecular weights were obtained using a Knaur Vapor Pressure 

Osmometer at 37°, 

Material s 

All solvents were reagent grade or better. Acetone was dried over 

molecular sieves. Ether was distilled from potassium/benzophenone while 

methylene chloride was distilled from P4O10* 
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Silver tetrafluoroborate was purchased from Alfa Inorganics. Silver 

nitrate and silver chloride were purchased from Fisher Chemical Company. 

Silver cyanide was purchased from Mallinckrodt and silver iodide was 

supplied by Allied Chemical. All silver salts were used as received. The 

ligands PfOMe)] (9), PfOEt)] (2_). PfOCHgCHgCl)] (10), PfOPh)] (U), PPhg 

(12), and PtNMeg)^ (7.) (Aldrich); P(0-_o;-tolyl )3 (13) (Eastman) and PF3 

(1_), PEtg (14) PMe2Ph (15) and PMePh2 (16) (Strem) were obtained from 

commercial sources. All ligands obtained from commercial sources, except 

(1_) which is a gas and was used as received, were purified by distillation 

or recrystallization. 

Preparation of Compounds 

P(0CH2)3CC2H5 (17.) 

This compound was prepared by the general method which Verkade and 

Heitsch used to prepare (39). 

KSeCN 

This compound was prepared by the method of Waitkins and Shutt (40). 

f—I 
PfNCHgCHg)] (19_) 

A literature method was followed for the preparation of this compound 

(41). Purification by distillation was not carried out because of a 

previous explosion reported when this was attempted (42). The crude 

product was judged to be greater than 90% pure by ^^P NMR spectroscopy 

(31p NMR ((003)200) 131.3, lit. 129 (42)). 
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PfOCHgCClg) (^) 

This ligand was prepared by the method of Gerrard _et (43) 

(bg = 160°, lit. bg 5 = 122° (43); ^Ip nmR ((CDgjgCO) 136.5). 

P(0CH(CH3)2)3 (21.) 

This phosphite was prepared as originally described by Ford-Moore and 

Williams (44) (bg = 40°, lit. b^ = 63-64 (45); NMR ((003)300) 140.6, 

lit. 138 (46)). 

P(NMeCH2)3CCH3 (22^) 

This ligand was synthesized using the procedures of Kroshefsky et al. 

(7). 

P(0-^-Bu)3 (23) 

This water stable but extremely acid sensitive ligand was prepared 

using the method of Cox and Newton (47) (b^ = 62-64, lit. b3 = 67-69 (47); 

NMR ((CDgigCO) 138.4, lit. 138.2 (48)). 

P(0-2,6-CgH3Me2)3 (24) 

Although the preparation of this compound has previously been 

reported in the literature (49), the following procedure was found to be 

an improvement. To a solution of PCI3 (14.7 g, 10.7 mMol) and Et3N 

(43.5 g, 43.0 mMol) in 500 ml of Et20 was added dropwise a solution of 

2,6-dimethylphenol (41.3 g, 38.8 mMol) in 200 ml of Etg^. The solution 

was kept at 5° with an ice bath. The precipitated NEt3*HCl was removed by 
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filtration after which the solvent was removed under reduced pressure at 

room temperature. Excess phenol was removed by distillation at 45° and 

5 mm Hg. Two recrystallizations from hexanes yieldedin 83% yield as 

white flakes (mp = 93.0, lit. 83-84 (49); NMR (CDCI3) 2.2s 2H CH3, 6.9m 

IH CgHg; NMR ((CDgjgCO) 143.9). 

CH30P0CH2C(CH3)2CH20 (2^ 

This phosphite was prepared as previously described (50). 

f I 
P(0CH2)2CH0 (26) 

This phosphite was prepared as previously described (51). 

MeOPOCH^CH^ (^) 

This phosphite was prepared as previously described (7). 

SeP(0-j^Bu)3, SeP(0CH2CCl3), SeP(0C5H5)3, SeP(0-2,6-C5H3Me2)3 

and SeP(0-o_-tolyl )3 

These selenophosphates were prepared by the procedure given by 

P. Nicpon and D. W. Meek for the preparation of phosphine selenides 

(52). A solution of phosphite (0.4 mMol) and KSeCN (0.4 mMol) was stirred 

in acetonitrile for 30 minutes. The selenophosphates were then extracted 

with benzene after removal of solvent. SeP(0CH2CCl3)3 was further 

purified by sublimation at 100° and 1 torr (SeP(0-t^Bu)3, ^^P NMR 

((003)200) 31.8, lit. 31.1 (47); SeP(0CH2CCl3)3, mp = 77-79, NMR 

(CDCI3) 4.7d JPH = 8 Hz, ^^P NMR ((003)260) 71.7, low resolution mass 

spectrum showed peaks in the parent ion region in the expected abundance 
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ratio due to the isotope abundance of Se; SePfOCgHgjg, NMR (CDCI3) 

59.7, lit. 58 (53); SeP(0-2,6-C5H3Me2)3, ^^P NMR (CD3CN) 51.0; 

SeP(0-o.-tolyl)3, NMR ((CDgjgCO) 55.0). 

[Ag(9)43BF4 

To a solution of AgBF^ (0.302 g, 1.55 mMol) in 50 ml of acetone was 

injected 2 (3.20 g, 25.8 mMol). Addition of Et20 resulted in the 

precipitation of the product which was recrystallized by slow addition of 

Et20 into an acetone solution to give a 74% yield of CAg(9J4]BF4 (^H NMR 

((003)200, 25°) 3.69d JPH = 11.7 Hz; NMR ((003)200, -65°) 3.67s; 

Anal. Calcd. for C12H36BF4O12P4: G, 20,85; H, 5.21. Found: 0, 21.00; H 

5.47). Prepared in a similar manner in comparable yields were [AgL4]BF4 

complexes where L is J^or or 

[Ag(12)4]BF4 

This complex was prepared by using the procedure Cotton and Goodgame 

reported for the perchlorate salt (13) except that acetone was used as a 

solvent instead of ethanol. An 81% yield was obtained upon recrystal-

lization from acetonitrile/ether. Prepared in a similar manner were 

[Ag(15)4]BF4 and [Ag(16)4]BF/L which were obtained in comparable yields 

after recrystallization from acetone/ether. 

[Ag(ll)3]BF4 

To a solution of AgBF4 (0.173 g, 0.891 mMol) in 15 ml of acetone was 

injected (2.18 g, 7.63 mMol). The solution was filtered and the 
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product was obtained in 74% yield after washing with EtgO. This compound 

could be recrystallized by slow addition of ether into an acetone solution 

(Anal. Calcd. for C54H45AgBF409P3: C, 57.61; H, 4.00; P, 8.27. 

Found: C, 58.31; H, 4.25; P, 8.26). 

[Ag(n)3]BPh4 

To a solution of AgBF4 (0.219 g, 1.12 mMol) in 20 ml of EtOH was 

added ^ (1.20 g, 5.76 mMol). The solution was allowed to stir for 2 

minutes before NaBPh4 (0.500 g, 1.46 mMol) was added. The product 

crystallized upon cooling to -20° for a period of 2 hrs. The product was 

washed with EtOH and then placed under vacuum for 1/2 hr. A yield of 97% 

was obtained (^H NMR ((003)200) 6.5-7.5m 20H C5H5, 4.7m 9H CH, 1.30d 54H 

CH3 ZjHH = 6.3 Hz). 

[Ag(21)4]BPh4 

To a solution of AgBF4 (0.339 g, 1.74 mMol) in 30 ml of (CH3)2CH0H 

was added ^ (3.45 g, 16.6 mMol). After the solution was allowed to stir 

for 2 minutes NaBPh4 (0.660 g, 1.93 mMol) was added to precipitate the 

product which was subsequently recrystallized in 89% yield from 

acetone/ether (^H NMR ((003)300) 6.5-7.5m 20H C5H5, 4.78m 12H CH, i.30d 

72H CH3 ZjHH = 6.3 Hz). 

Ag(24)BF4 

In 30 ml of CH2CI2 was dissolved AgBF4 (10.2 g, 1.02 ntflol) and 24 

(0.450 g, 1.14 mMol). The mixture was allowed to stir for 5 minutes. The 
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product was precipitated by the addition of 20 ml of ether followed by 

slow addition of hexanes. A yield of 69% was obtained after 

recrystallization by slow addition of hexanes into a solution of 50% 

CHgClg in EtgO (^H NMR (CD3CN) 6.9m IH CgHg, 2.1s 2H CH3). 

[Ag(23)2]BF4 

To a solution of AgBF^ (0.213 g, 1.10 mMol) in 20 ml of acetone was 

added ^ (1.50 g, 6.60 mMol). The solution was allowed to stir for 10 

minutes. Addition of Et20 (10 ml) and hexanes (50 ml) resulted in the 

precipitation of CAg(23)2]BF4 in 67% yield (^H NMR ((003)300) 1.4s). 

Ag(23jX 

Complexes where X = CI, ON or I were prepared by reacting four 

equivalents of ^with a suspension of the corresponding silver salt. For 

example, Ag(23)Cl was prepared by adding ̂  (2.23 g, 8.92 mMol) to a 

suspension of AgCl (0.319 g, 2.22 mMol) in EtgO. The AgCl went into 

solution over a period of 10 minutes. Hexanes were then added and the 

solution was cooled to -70° overnight to precipitate the product. A yield 

of 69% was obtained after recrystallization from hexanes (^H NMR (CDCI3) 

1.4s; Anal. Calcd. for Ci2H27Q3ClPAg: C 36.6, H 6.9; Found: C 37.8, 

H 7.8.) Prepared in a similar manner were Ag(23)1 which could only be 

isolated as an oil in 55% yield upon attempted recrystallization from 

hexanes (^H NMR (CDCI3) 1.4s) and Ag(23)CN which was recrystallized from 

hexanes in 51% yield (^H NMR (CDCI3) 1.4s). 
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Ag(23)2N03 

To a suspension of AgNOg (0.30 g, 1.76 mMol) in 20 ml of ether was 

injected ̂  (2.50 g, 10.0 mMol). The mixture was allowed to stir as the 

AgNOg reacted and went into solution. Cooling to -70° resulted in the 

precipitation of colorless needles in 59% yield (^H NMR (CDClg) 1.4s; 

Anal. Calcd. for C24H54Ag0gNP2: C, 42.99; H, 8.06. Found: C, 43.19; H, 

8.39). 

[Ag(7j2]BPh4 

To a solution of AgBF^ (0.210 g, 1.10 mMol) in 30 ml of EtOH was 

injected 2. (0.360 g, 2.21 mMol). After the mixture was allowed to stir 

for 30 seconds, NaBPh^ (0.450 g, 1.40 itMol) was added to precipitate the 

product which was isolated in 50% yield after recrystallization by slow 

diffusion of Et20 vapor into a saturated solution of [Ag(2.)2]BPh4 in 

CH2CI2. (^H NMR (CD2CI2, -45°) 2.61t 36H NCHsl^JPH + ^JPHj = 11.4 Hz, 

6.8-7.2m 20H CgHs.) 

[Ag(l)3]BPh4 

To a solution of AgBF4 (0.124 g, 0.634 mMol) in 30 ml of ethanol, was 

injected 2 (0L692 g, 4.25 mMol). After the solution was allowed to stir 

for 30 seconds, NaBPh4 (0.250 g, 0.731 mMol) was added to precipitate 

[Ag(7j3]BPh4. After washing with ethanol a yield of 72% was realized. 

NMR ((003)200) 2.57d 54H NCH3 ^JPH = 10.5 Hz, 6.8-7.2m 20H CgHg). 
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An attempt at recrystal lizing [Ag(7_)3]BPh4 from CH^Clg/EtgO resulted 

in the precipitation of a mixture of [Ag(7_)2]BPh4 and [Ag(2.)3]BPh4 as 

shown by low temperature NMR spectroscopy (vide infra). 

[Ag(22)33BPh4 

Into a solution of AgBF4 (0.157 g, 0.0807 mMol) in 20 ml of ethanol 

was injected (0.573 g, 2.90 mMol). Addition of NaBPh4 (0.320 g, 0.936 

mMol) resulted in precipitation of [Ag(22)i]BPh4 in 72% yield after 

washing with ethanol. This compound could be recrystallized without loss 

of ligand from acetone/EtOH (^H NMR ((003)200) 0.90s 9H C-CH3; 2.63d 27H 

NCH3 3jPH = 18.1 Hz, 2.79d 18H CHg ^JPH = 4.9 Hz, 6.8-7.2m 20H C5H5). 

[AgfTjgX] 

Complexes where X = CI, CM, I or NO3 were prepared by reacting 8.0 or 

more molar equivalents of ligand with an ether suspension of the 

corresponding Ag(I) salt. As an example [Ag(7_)2Cl] was prepared by 

injecting 2. (3.50 g, 21.6 mMol) into a suspension of AgCl (0.362 g, 2.36 

mMol) in 50 ml of Et20 whereupon the AgCl slowly dissolved. Slow 

evaporation of some of the solvent under a nitrogen atmosphere caused 

precipitation of the product, which was subsequently obtained in 72% yield 

as colorless needles after recrystallization from Et20 (^H NMR ((003)200) 

2.62d ZJPH = 10.2; Anal. Calcd. for CigHsGNgPzClAg: C, 30.68; N, 17.90. 

Found: C, 31.08; N, 17.88). The same procedure was used to prepare 

Ag(Z.)2l» Ag(7_)2CN and Ag(_7.)2N03 in yields at 68, 89 and 75%, respectively. 
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[Ag(19)4]BF4 

Addition of approximately 14 molar equivalents of ^ to a solution of 

A9BF4 (0.155 g, 0,796 mMol) in 20 ml of EtOH resulted in the immediate 

precipitation of [Ag(19)a]BF^. This heat and light sensitive compound is 

insoluble in ethanol and acetone but is soluble in CH2CI2. A 76% yield of 

product was obtained after recrystallization from CHgClg/EtgO (^H NMR 

(CDCI3) 2.16d SjPH = 11.7; Anal. Calcd. for C24H4gAgBF4P4Ni2: C, 35.01; 

H, 5.83; N, 20.42. Found: C, 35.07; H, 6.28; N, 18.66). 

[Ag(JL9)4]X 

Approximately 10 molar equivalents of was injected into a 

suspension of Agi (0.417 g, 1.78 mMol) in 50 ml of Et20. The yellow color 

of the Agi disappeared within two minutes and the solution became a cloudy 

white. The solution was stored at -65° overnight whereupon the product 

precipitated from solution. The product was obtained as a slightly oily 

white powder in 80% yield after filtration and washing with EtgO and 

hexanes. An attempt at recrystal lization of [Ag(19)/L]l from CH2Cl2/Et20 

in the presence of a molar equivalent of free ligand did not improve the 

physical appearance of the compound (^H NMR (CDCI3) 2.Id ^JPH = 11.0). 

[Ag(19)]4Cl, which could only be isolated as an oil, was prepared by using 

essentially the same procedure (^H NMR (COCI3) 2.Id ^OPH = 10.8). 

X-ray Data for CAg(P(NMe2)3)2]BPh4 

Crystals of [Ag(7_)2]BPh4 were grown by slow diffusion of Et20 into a 

saturated solution of the complex in CH2CI2. A crystal was cut to 
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dimensions of approximately 0.2 x 0.2 x 0.2 mm and was mounted and sealed 

in a Lindemann capillary. The crystal was indexed in an automatic 

indexing procedure (54) using 12 independent reflections. It was found to 

be monoclinic with a_ = 11.975(3), = 17.325(3), c_ = 20.079(5) A and g = 

107.08(3)° with four molecules of [Ag(7_)2]BPh4 per unit cell. A density 

3 
of 1.26 g/cc was computed based on a cell volume of 3981(1) A . 

Systematic absences (hOl absent if 1 = 2n + 1, OkO absent if k = 2n + 1) 

indicated space group 

Data collection was carried out using an automated four-circle 

diffractometer built in the Ames Laboratory which was equipped with a 

scintillation counter and interfaced to a PDP-15 computer. Employing a 

procedure described previously (55), data were collected with graphite 

monochromated MoKa radiation from four octants within a sphere of 29 < 50° 

yielding 8432 measured intensities. There was little crystal 

decomposition as judged by repeated measurements of three standard 

reflections. Corrections for Lorentz polarization effects and averaging 

of equivalent data yielded 4523 observed reflections (F q > 3oF). Lattice 

constants were obtained by a least squares refinement of +28 for 15 high-

angle reflections. 

The silver atom was positioned from a Patterson map. Electron 

density maps generated by the program ALLS (56) were used to locate the 

remaining nonhydrogen atoms. Isotropic refinement of these positions by 

block matrix least squares techniques followed by three cycles of 

anisotropic refinement using full matrix techniques gave a conventional 

residual index (R) of 5.5 and a weighed R factor of 8.9. Phenyl hydrogen 
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positions were calculated assuming a carbon-hydrogen bond length of 

1.05 A. Hydrogen atom temperature factors were set at 1.0 A greater than 

that of the corresponding carbon. The scattering factors (57) were 

modified for anomalous dispersion effects (58) and hydrogens were included 

but not refined. Final atom positional parameters (Table Al) and thermal 

parameters (Table A2) are summarized as indicated. 
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RESULTS AND DISCUSSION 

Cationic Phosphorus Ligand Complexes 

of Silver(I) 

The extent of ligation of Ag(I) by phosphorus ligands can be limited 

either by the steric bulk of the ligand or a lack of basicity of the lone 

pair on phosphorus. A prime example of the latter is the coordination of 

^ to silver(I). The very poor basicity of _2^ compared to 9 and 18 is 

illustrated by the energies of CO stretches in metal carbonyl complexes 

(59), the values of ^J^^SeP and ^JHP in the protonated and selenated 

ligands, respectively (6,7), the energies of the P=0 stretches of the 

corresponding phosphates (60) and the energies of the B-H stretch of their 

BH3 adducts (61). 

Addition of one equivalent of ̂  to a solution of AgBF^ at -95° 

resulted in the observation of the AgL"*" species in solution at 118.0 ppm 

with a value of 1057 Hz. Addition of more &6 results in the 

growth of an unsplit resonance at 112 ppm due to uncomplexed ligand. 

These results suggest that Ag(I) tolerates only one poorly ligating ̂  in 

its coordination sphere despite the small size of the ligand. It may be 

that 26 is acting as a Lewis acid for Ag(I) and that coordination of one 

2^ligand enhances the positive charge on Ag(I) such that a second ligand 

will not coordinate. No evidence of coordination of to Ag(I) could be 

seen in the NMR at -90° of a saturated solution of PF3 in acetone 

which was 0.1 M in AgBF^. This result is not unexpected in view of the 

fact that the %% value for 2» 56.3, is significantly greater than for 
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phosphorus ligands which do coordinate to silver(I) (Table 3). The poor 

basicity of PF3 compared to phosphites and phosphines has also been 

demonstrated by the high value of ^JPH in [H-PFg]^ (62). 

As another example of this type of behavior NMR evidence shows 

that which has a cone angle of 115°, will form only a three-coordinate 

ionic complex with Ag(I) in solution. For a solution which is 0.3 M in 

AgBF4 containing 7 equivalents of ligand, the only signals which are 

observed in the ^^P NMR are an unsplit signal due to free ligand at 140.1 

ppm and a species absorbing at 128.3 ppm showing a ^J^^^Ag^^P value of 

508 Hz which is assignable to [AgLg]* by comparison with the values in 

Table 4. Even though ^ and ̂  have cone angles of 130° and 145°, 

respectively, ionic four-coordinate Ag(I) complexes of these ligands can 

be isolated. This is undoubtedly due to their greater basicity compared 

to 20, as shown by their Ex values and Ij^^Se^^P couplings in their 

corresponding selenophosphates (Table 3). 

Although j^has a cone angle of (127°), within a few degrees of 21 

(130°), only [Ag(ll):^]BF/L was isolated in the solid state after reacting 

9 equivalents of with one equivalent of AgBF^. The four-coordinate 

[Ag(ll)4]BF4 species could be observed in the low-temperature ^^P NMR, 

however, upon addition of four or more equivalents of _ll_to a solution of 

AgBF^. Similar occurrences have been noted in Au(I) chemistry. For 

example. Mays and Vergnano observed [Au(14)p3"^ (n = 2, 3 or 4) in solution 

but could only crystallize [Au(iDglPFg even in the presence of a five

fold excess of ligand (63). For the [Au(^)p]'*' system, it was found that 

if CIO4" is the counter anion, only the bis and tris ligand cations can be 
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Table 3. Ligand cone angles, sum of.ligagd substituent contributions, 
to v(CO)(A,) in NifCOjgL, Jlp-''Se coupling of corresponding 
ligand selenides and maximum value of n in [AgL^]* 

Max n 

igand Cone Angle® 
n 

Zx" IjSe-P 
(Hz) 

Isol. solid Soin at 

< 101 IO99C M M «I*  1 

17_ 101 33.9^ IO53C 4 4 ' 

9_ 107 23.1 954C 4 4 

ii 108 --- 85ie 4 4 

,109 20.4 935? 4 4 

II 110 27.9 955? 4 4 

_20 115 35.7 1018 — — — 3 

122 9.5 7109 4 4 

_n 128 29.1 1025 3 4 

21 130 18.9 912? 4 4 

^Values taken from reference 1 except for _2^ which was an estimate. 

^Determined by measuring v(co)(Ai) of NifCOjgL in CH2CI2. For 

PX1X2X3 V = (2056.1 + cm'l. Values calculated from data given in 

reference 1 unless otherwise indicated. 

^Reference 7. 

*^0. G. Verkade, R. E. McCarley, D. G. Hendricker and R. W. King, 
Inorg. Chem. 4, 228 (1965). 

^Reference 42. 

?W. J. Stec, A. Okruszek, B. Uznarlski and J. Michalski, Phosphorus 2, 
97 (1972). 

9W. McFarlane and D. S. Rycroft, J. Chem. Soc., Dalton Trans., 2162 
(1973). 
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Table 3. (Continued) 

Max n 

Ligand Cone Angle® 
n 

I jSe-P  

(Hz) 
Isol. Solid Soin at -95°C 

_14 132 5.4 705^ — — 4 

16_ 136 11.2 7259 4 4 

11 141 27.9 1022 --- 3 

IL 145 12.9 7359 4 4 

_3 145 10.5 723h 41 41 

]_ 157 5.7 805C 3 3 

IL 6.5 854C 3 3 

172 — — — 924 2 3 

± 182 0.0 712j 2k 2k 

il 190 1012 1 2 

5_ 212 --- --- 2^ 2l 

^R. P. Pinnell, C. A 
J. Am. Chem. Soc. 95, 977 

. Megerle, 
(1973). 

S. L. Manatt and P. A. Kroon, 

^Reference 11. 

k. -W. DuMont and H. -J. Kroth, J. Organomet. Chem. 113 1 ,  C35 (1976). 

^Reference 17. 

k. C. Alyea, S. A. Dias and S . Stevens, Inorg. Chim. Acta 44, L203 
(1980). 
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Table 4. NMR chemical shifts and silver(107)-phosphorus(31) couplings 
as a function of L and n in [AgL^] X" complexes 

CAgL„]X 

L X g31pa ,b a^lpS/JAg-pC 

free ligand n = 1 2 3 4 

PFe 1.1 13.1 
503 

10.6 
321 

5.6 
225 

11 BF4 -20.0 10.3 
712 

8.9 
482 

1.9 
304 

7.5 
211 

BF4 -32.5 
759 

32.9 
470 

26.6 
304 

15.5 
219 

£ PFe -39.1 -25.8 
513 

IL BF4 -7.4 7.5 
222 

BF4 -28.0 -16.0 
230 

11. BF4 -47.0 -31.6 
212 

i? BF4 60.8 80.0 
444 

^In ppm relative to 85% HgPO^. 

^Measured at ambient temperature. 

^Values precise to ±2 Hz. 

^Reference 11. 

^Reference 21. 

^E. C. Alyea, S. A. Dias and S. Stevens, Inorg. Chim. Acta, 44, L203 
(1980). 

^Reference 17. 
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Table 4. (Continued) 

L X g31pa,b 

free ligand n = 1 

[AgLn]X 
gSlp^/JAgpC 

2 3 4 

11 BF4 131.3 186.6 
801 

118.3 
303 

]_ BF4 121.4 121.5 
910 

]_ BPh4 115.4 
610 

122.1 
393 

IL BF4 83.8 90.2 
811 

90.4 
603 

22_ BPh4 101.1 
394 

L BF4 139.8 125.4 
1038 

CIO4 123 
756 

129 
472 

133 
341 

11 . BF4 127.5 120.0 
992 

116.8 
667 

115.7 
505 

116.5 
345 

11 BF4 138.5 102.1 
1118 

102.7 
747 

113.8 
469 

BF4 136.6 129.7 
989 

125.3 
691 

126.3 
509 

11 BF4 129.1 122.4 
992 

115.8 
692 

114.9 
5Q0 

li. BF4 143.9 127.4 
1063 

120 
700+20 

21_ BPh4 140.6 134.8 
472 

130.2 
343 
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Table 4. (Continued) 

[AgLjx 

L X gSlpa.b 

free ligand n = 1 

(flpG/JAgpc 

2 3 4 

26 BF4 106.1 118.0 
1057 

9_ BF4 139.8 133.7 . 
341 

IL BF4 91.8 101.5 
369 

11 BF4 138.9 131.1 
346 

isolated (64), while with BgHi2S all three cations [Au(3_)p]"^ (n = 2, 3 or 

4) could be isolated; however, with or BuHi^" only 

[Au(2)4]^ was isolated (65,66). The trend seen here is that smaller 

anions favor the crystallization of smaller cations while large anions 

favor isolation of larger cations (67). An attempt was made to prepare 

[Ag(ll)4]BPh/L by reacting 10 equivalents of JJ^to one equivalent of AgBF^ 

in EtOH and then adding NaBPh^ to crystallize the BPh^ salt. This 

resulted, however, in obtaining a product which was insoluble in all 

common organic solvents and was not further characterized. The low 

conductivity of [Ag(ll)^]BF4 in CH2C12 (Table 5) possibly indicates that 

the less basic ligands enhance the positive charge on silver(I) which 
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Table 5. Melting point and conductance data for isolated ionic silver 
complexes 

Molar conductance mp 

(ohm'l cm^ mole"^)^ (°C) 

[Ag(9.)4]BF4 50.8 97-8 

CAg(19)4]BF4 57.1 170 

[Ag(10)4BF4 49.5 66-7 

[Ag(17}4]BF4 135b - - -

[Ag(2i)3]BPh4 139b 66-8 

CAg(21}43BPh4 139b 55-7 

CAg(12)4]BF4 107.3b 278-8 

[Ag(16)4]BF4 126.ob 174-5 

CAg(15)4]BF4 115.3b 75-7 

CAg(7_)2]BPh4 59.8 115-6 

CAg(7_)3]BPh4 54.1 125-6 

[Ag(2^3]BPh4 45.1 155-8 

[Ag(2)4]BF4 57.8 113 

[Ag(^]BF4 7.3 127 

[Ag(n)3]BF4^ I4.2C 95-9 

®For 10"3 M solutions in CH2CI2 at 25° unless otherwise indicated. 

bpor 10-3 M solution in CH3CN at 25°. 

conductance of 25.0 ohm"^ cm^ mole"^ was measured in nitrobenzene 
wherein a 1:1 electrolyte typically has a conductance of 20-30 ohm"^ cm'^ 
mole'l. 
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allows interaction between the BF4 anion and the coordinatively 

unsaturated Ag(I) ion. Upon addition of 12 molar equivalents of (a 

phosphite of basicity similar tojl) to a 0.3 M solution of AgBF^, a 

resonance at 114.9 ppm with a 107Ag_31p coupling of 500 Hz assignable to 

[Ag(P(0R)3)3]* as well as an unsplit peak due to free ligand at 129.1 ppm 

is seen in the NMR spectrum. The inability of to form a four-

coordinate complex is undoubtedly due to the larger steric demands of 13 

compared to 

Previously it was found that the extent of coordination of large 

phosphine ligands can be limited by their steric bulk (17,18). The two 

ami nophosphine ligands _7 and are of a size intermediate between and _5 

(which have cone angles of 182 and 212°, respectively) and smaller ligands 

such as _9 (whose cone angle measured 107°) which can form [AgL^]* 

complexes. The ami nophosphine ligands _7_ and form ionic Ag(I) complexes 

which contain an upper limit of three ligands which can be observed by 

31p{H} f^|v|R spectroscopy, both in the solid state and in solution. When ]_ 

is added to AgBF^ in a 2:1 molar ratio, [Ag(2.)2]^ is formed which can be 

isolated in 50% yield as a crystalline tetraphenylborate salt. In the 

presence of a seven-fold excess of 2» a 72% yield of [Ag(7_)3]BPh4 is 

realized. Attempts to recrystallize this salt resulted in partial loss of 

ligand to precipitate a mixture of two and three-coordinate complexes as 

shown by ^^P NMR spectroscopy. Like A» ^ is capable of forming an 

isolable three-coordinate complex [Ag(22):^]BPh/i in high yield (72%). 

Upon successive addition of molar equivalents of 2to a 0.3 M 

solution of AgBF^ in CH2CI2/(003)200 (75/25), progressively smaller ^JAgP 
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values are observed at the corresponding chemical shifts given in Table 

4. Addition of a fourth equivalent of 2 resulted in the appearance of an 

extremely broad resonance at 122 ppm, suggesting that [Ag(2)3]^ undergoes 

ligand exchange by an S[^2 mechanism in the presence of free ligand. The 

same observation was made with the two-coordinate complex [Ag(23)p]"'' 

reported earlier by others (17). Analogous experiments with 22 revealed 

that [Ag(22)9]BF4 disproportionates to a small extent to [Ag(22)r]BFA and 

Ag(22)BF4 which may explain the failure of attempts to isolate 

[Ag(22)?]BPhA. Addition of a fourth molar equivalent of 2^ to a solution 

of AgBF^ caused collapse of the NMR doublets to a broad singlet at 96 

ppm indicating that [Ag(22)i]* also probably undergoes exchange by an 8^2 

mechanism in the presence of free ligand. 

The formulation of the 1:1 complexes in the aforementioned NMR 

experiments as [Ag(2)]BF4 and Ag(22)BF4 are deduced from low temperature 

conductivity studies which are now described. The insolubility of AgBF4 

in CH2CI2 and its incomplete reaction with 7_and ^precluded conductivity 

studies in this solvent. Because of decomposition, difficulties were 

encountered in maintaining completely clear solutions in acetone at 25°. 

However, measurements could be carried out in acetone at -22°. 

Correlation of our conductivity results in this solvent with the NMR data 

is not unreasonable since 25% acetone in CH2CI2 was the solvent system 

used in the NMR experiments. Using approximately 10"^ M AgBF4 in acetone 

at -22°, the conductivity of the solution was found to decrease 26% upon 

the addition of _2^, but rose to the original value upon addition of a 

second equivalent. This suggests that the complexes present at -95° in 
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Me2C0 in CH2CI2 is a weakly or nonconducting Ag(22)BF4 species. It is 

interesting in this respect that previous workers have reported complexes 

of the type [RgPAgClO^] (wherein the ligand is a bulky trialkyphosphine or 

a triaryl-phosphine) which are two-coordinate in methylene chloride and in 

the solid state owing to coordination of the anion (68), With _7 no 

decrease in conductivity was observed which is indicative of [Ag(7)]BF4 

wherein the more basic aminophosphine ligand (probably in conjunction with 

ligated solvent molecules) is capable of satisfying the coordination 

requirements of the silver without anion participation. Moreover, the 

anomalously large coupling of 910 Hz for this complex would 

appear to suggest the presence of substantial [Ag(2^)]BF4 in equilibrium 

with Ag(7_)BF4 while the 811 Hz value for the corresponding complex of ^ 

can be construed to indicate a larger fraction of two-coordinate Ag(22)BFA 

which would have less s character in the Ag-P bond. Coordination of BF4" 

has been verified crystallographically in the solid state structures of 

Cu(12)-^BF4 (69) and [Mi (en)2(H20)BF4]BF4 (70) and has been suggested by IR 

and conductivity measurements in a number of other complexes (71-74). The 

solid state structure of Ag(2,4,6-t^Bu3CgH2CN)2PF6 was also found to be 

four-coordinate with the PFg moiety functioning as a fluoride chelate 

(75). This complex was found to be a 1:1 electrolyte in DMSO, however. 

Isolated three-coordinate complexes of the type [Ag(L)3]* are still 

rare. Previously, a number of complexes of the type AgLgX (where L = _2 

andand X = halide, pseudohalide, BgHg, S2PF2, O2CCF3, NO3,PFg, CIO4 or 

B9H12S) were described (11). Many of these complexes disproportionate 

according to reaction 6 with the extent of disproportionation varying with 
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the coordinating ability of X. Analogous disproportionation products of 

[Ag^s]"*" and [Ag(22)i]* were not detected in their NMR spectra at 

2[AgL3]X ^ [AgL^jX + [AgLglX (or AgLgX) (6) 

-95°. This is not unexpected since [Ag(7^)/^]'*' and [AgfZZ)^]* are not 

observed in the NMR spectra at this temperature in the presence of 

excess ligand (vide supra). However, since the ^^P NMR resonances for 

[AglZJs]^ and [Ag(22)i]* broaden upon adding ligand at -95°, the 

corresponding [AgL^]^ species could well be intermediates in an 5^2 

associative ligand exchange process. Reaction 6 cannot be ruled out as a 

pathway for ligand exchange at higher temperatures. 

In contrast to 2 and addition of successive equivalents of the 

aminophosphine 19 to solutions of AgBF^ allowed the observation of 

Ag(19)BFA and [Ag(19)9_A]BFA in solution. The 1:1 complex is formulated 

as nonconducting on the basis of its low ^J^^^Ag^^P coupling and the fact 

that addition of a molar equivalent of J^to an acetone solution of AgBF^ 

at -22° resulted in a 39% decrease in conductance. 

The coordination chemistries of the large phosphite ligand _2^and the 

large phosphine 4^with silver(I) are rather different although an 

[AgLgjBF^ complex is isolated after reacting excess L with AgBF^ for both 

ligands. Others have reported that [Ag(£)23BF4 shows Ag-P coupling in its 

^^P NMR spectra at room temperature (17). However, the spectra of solu

tions containing an equimolar mixture of complex and free ligand consisted 

of a singlet at room temperature while at -90° separate signals due to 
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temperatures are necessary to observe coupling in [Ag(23)^]BF4. A NMR 

taken of a solution which was 0.2 M in [Ag(23)9]BF4 and contained two 

molar equivalents of ^consisted of signals assignable to [Ag(23)-^]BF4 

and free ligand. It is thus seen that [Ag(4^)2]^ does not exchange in 

solution at room temperature and [Ag(4)cannot be observed in the NMR 

spectrum, while [Ag(23)9]BFA does undergo rapid ligand exchange at room 

temperature and [Ag(23)q]BF4 can be observed in the NMR spectrum. This 

indicates that an associative step is involved in the exchange of these 

two-coordinate complexes as suggested earlier (17)., Since [Ag^^^]+ is 

unstable, [Ag(£)2]"^ undergoes exchange rather slowly. 

In an attempt to make a two-coordinate cationic silver complex of a 

phosphite ligand which would not exchange at room temperature, complexes 

of 24_were investigated. It was thought that the greater steric require

ments of ^ as opposed to ̂  would destabilize a three-coordinate cation 

and hence retard the intermolecular exchange of a two-coordinate cation. 

When four equivalents ofwere added to a methylene chloride solution of 

AgBF^, however, Ag(24)BF/|. precipitated from solution upon addition of 

hexanes. As expected, this complex showed a relatively low conductivity 

in CH2CI2 (Table 5) which suggested coordination of the BF4 anion. No 

difference was seen in the NMR of this complex from that reported for 

ionic BF4 (76) down to temperature of -95°, however. 

In addition to the conductivity measurements, evidence for the two 

coordinate nature of Ag(24)BF/L comes from solid state NMR 

spectroscopy. The two coordinate nature of [Ag(_7.)2]BPh4 in the solid 
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state is shown by crystal!ographic studies (vide infra), while 

conductivity data show this complex to be a 1:1 electrolyte in CH2CI2 at 

25°. The NMR chemical shifts and silver-phosphorus coupling of this 

compound measured in the solid state and in solution at -95° are 

comparable. Conversely, the solution and solid state NMR of Ag(24)BF/[ 

are rather different with a significant decrease in silver-phosphorus 

coupling (Table 6). 

Table 6. Comparison of solution and solid state ^^P NMR for [Ag(7_)23BPh4 
and Ag(24)BF^ 

gSip jl07Ag31p Molar conductance 

(ppm) (Hz) (ohm"^ cm^ mole"^)® 

[Ag(^)2]BPh4 (solution) 115.4 610 59.8 

[Ag(D2]BPh4'^ (solid) 115.2 603 

Ag(24)BF4 (solution) 127.4 1068 7.3 

Ag(2£)BF4'^ (solid) 112.6 803 

apor 10-3 ^ solutions in 25°C in CH2CI2. 

bjim Frye of the Regional NMR Center at Colorado State University is 
thanked for these measurements. 

Addition of 0.8 molar equivalents of_24 to a solution of AgBF^ in 95% 

CH2Cl2/5% dg-acetone resulted in the appearance of a ^Ip |\|MR signal at 

250K which was assigned to Ag(24)BFa (Table 6). The ligand exchange in 
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Ag(24)BF4 at 250K is slow compared to other isolated silver complexes of 

phosphite ligands which are two-, three-, or four-coordinate and which 

require low temperatures (<190K) to observe coupling. At 250K, silver-

phosphorus coupling is completely resolved in Ag(24)BF4. Introduction of 

additional ̂  resulted in the .collapse of the silver-phosphorus coupling 

seen at 250K. For a solution which is 0.15 M in AgBF^ and 0.50 M in 

peaks are seen in the NMR at 194K corresponding to free ligand, 

monoligated Ag(I) and diligated Ag(I) in an area ratio of 1:1.3:1. The 

peaks due to the monoligated Ag(I) species are better resolved than that 

for the diligated species showing, as expected, that the more sterically 

crowded species exchanges at a faster rate. Although [Ag(24)9]BF4 could 

not be isolated, a two-coordinate cation of a larger ligand [Ag(^2]^ has 

previously been shown to exist (18). This apparent paradox can be 

explained by either the greater basicity of the phosphine ^ compared to 

phosphiteor by relative sizes of ^ and ̂  which are different from 

those predicted by models. Crystal!ographic support for the latter 

explanation will be given later (Section III). 

In a number of other d^® metal complexes of phosphine ligands, it was 

noted that a large downfield coordination chemical shift is observed in 

the NMR spectrum which decreases upon increasing coordination number 

(64, 77-79). The upfield shift upon increasing coordination number in 

Ag(I) complexes of 3_and the phosphite ^was also seen by Muetterties 

although the trend was less pronounced and complexation of the phosphite 2 

led to an upfield coordination chemical shift (11). Further examination 

of silver(I) complexes of phosphorus ligands shows that the trend of 
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downfield coordination chemical shifts which decrease upon increasing 

coordination number is not a general trend as seen in Table 7. In fact, 

the coordination chemical shift in [Ag(23)]BF/^ is -36 ppm. 

The NMR spectra of the exchanging silver(I) complexes, like the 

spectra, are also temperature dependent. For three- and four-

coordinate complexes, an effective decoupling of phosphorus to 

the a hydrogens is seen as the temperature is lowered. For example, the 

proton resonances in [Ag(9^)4]BF4 and 

Table 7. NMR chemical shifts® as 
in complexes of d^" metals 

a function of coordination number n 

2 

n 

3 4 Reference 

Hg(28)„2+ 13.0 2.5 -17.5 77 

Pd(29)n 49.3 9.0 - - - 78 

Pd(14)„ --- 9.6 -1.5 78 

Ptt29J„ 70.7 64.4 - - - 78 

64.0 4.6 78 

Au(14)„^ 43.3 38.3 5.7 62 

Au (16),,+ 26.0 13.8 -5.8 77 

®In ppm downfield of 85% H3PO4. 
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[Ag(7_)33BPh4 are singlets below -65°C. Previously, it was reported that 

the NMR spectrum of [Cu(2)4]^ at -15° in methylene chloride solution is 

characteristic of the [AgX]^ spin system with A = and X = ^^P (80). At 

this temperature, the NMR consists of two sharp outer lines (pJPH + 

3(^JPH| = 11.2 Hz)) arising from species in which the phosphorus spin 

states are all a or all g along with a broad band between the two outer 

peaks (80), At 23° mixing of these spin states was sufficient for the two 

sharp lines to collapse into the broad band. Ligand exchange had no 

effect here since copper-phosphorus coupling was seen in the ^^P NMR at 

both temperatures. 

The appearance of the a protons in these three- and four-coordinate 

complexes will be a function of ^JPP, ^JPH and ^JPH (81,82). The value of 

2jPP will significantly decrease as the P-Ag-P angle decreases as shown in 

studies of complexes of the type Ag{P(0) (0Et)2(£)n}, n = 1, 2, 3 (83). It 
%  . . .  
was decided not to do a detailed NMR examination of the three- and 

four-coordinate ionic silver(I) complexes due to the number of factors 

involved in determining the shape of the a hydrogen resonance. 

The NMR spectrum of the linear two coordinate complex CAg(7_)2]BPh4 

is more readily explainable. As the temperature is lowered the proton 

resonance becomes a triplet owing to the chemically equivalent protons on 

each ligand which are magnetically inequivalent because of strong three-

bond couling to a phosphorus which is in turn strongly coupled to the 

second phosphorus in the intact two-coordinate complex. Similarly, the 

peaks become a triplet which is consistent with |JAX-JAX '1^<8JXX'vi/2 

where A = and X,X' = ^Ip (81,82). 
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Neutral Complexes of Sllver(I) Complexed to 

Phosphorus Ligands 

Analogously to cationic complexes of Ag(I), the extent of coordi

nation of phosphorus ligands in complexes of Ag(I) wherein the anion 

coordinates can be limited by the size of the phosphorus ligand. 

Previously, others have shown that equilibrium 2exists in solution when L 

is_2 or_3^, but four-coordinate ionic complexes could not be isolated 

[L4Ag]+X- LgAgX + L (7) 

in the solid state where L was either of these ligands (11). Later, the 

isolation of [Ag(28)^]Cl was reported but this compound is rather unstable 

(84). 

Aminophosphine 19, which is sterically smaller than also forms 

isolable ionic four coordinate complexes with Ag(I). In solution at -88° 

[Ag(19)/|]I dissociates according to equation 7 and resonances assignable 

to [Ag(19)/|]I, Ag(19)gl and free ligand can be assigned in the ^^P NMR 

spectrum as shown in Figure 3. At 25° the virtually zero conductance, 

observed in a 10"^ M solution of [Ag(19)/|]I in CHgiClg is probably due to 

entropy effects which shift equilibrium 7 to the right. Upon lowering 

the temperature of the solution to -65°, a small but definitely 

measureable conductance is observed despite the tendency for conductances 

to decrease with decreasing temperature owing to lower ionic mobility. 

The chloride ion has been shown to be a weaker ligand toward Ag(I) than I~ 

(11). In accord with this observation, [Aq(19)/|.]Cl, which could only be 
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[49(19),]I 

Agfig)]! 

6 = 130.3 

IjAgP = 337 

6 = 116.1 

IjAgP = 302 

Figure 3. NMR spectrum of [Ag(19)^]I at -88°C in 75/25 

CHLClg/dg-acetone. The Ag-P coupling constants 
107 

refer to the Ag nucleus 
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isolated as an oil, shows no evidence for equilibrium 7 in the low 

temperature NMR spectrum. 

As was observed with the cationic complexes, only two 2 1igands 

coordinate to Ag(I) when the anion coordinates. Addition of 10 molar 

equivalents of 2 to ether suspensions of AgX where X is CI, I, NO3 or CN 

resulted in the formation of Ag(^2^ upon crystallization. These 

complexes were nonconductors in CH2CI2 with the exception of the NO3" salt 

which shows slight conductance. The decrease in silver-phosphorus 

coupling in the order X = NO3 > CI > I > CN (Table 8) parallels that seen 

previously with AgL2^3X where L was ^ or 3_ (11) and in Ag(^)X complexes 

(17). Addition of less than 1/4 molar equivalent of ligand to 0.2 M 

solutions the Ag(_7,)2^ complexes at -95° leads to collapse of the NMR 

coupling pattern, which shows that Ag(2)2X complexes can undergo ligand 

exchange via an S|\|2 type mechanism in the presence of excess ligand. 

The NMR spectra of the Ag(7_)2X complexes show a doublet at room 

temperature and a singlet at -95°. The proton doublet is consistent with 

rapidly dissociating ligand while the low temperature proton singlet could 

arise from opposite signs of approximately equal values of ^JPH and ^JPH 

in the intact AgL2X complex (81,82). 

For both 4 and 23, complexes of the type AgLX (X = CN, CI or I) are 

isolated after reacting excess ligand with suspensions of the silver 

halides in ether. The temperature-dependent ^^P{H} NMR spectra of the 

phosphine and phosphite complexes are different, however. When L is _4 

silver-phosphorus splitting is observed at room temperature (17), while 

Ag(23)X complexes show a singlet in the ^^P NMR spectrum at room 
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Table 8. NMR, melting point, conductivity and molecular weight data 
of non or slightly conducting silver complexes 

Molar . mp Molecular weight 
conductance 

mp 

(ppm) (Hz) (ohm'l ( .^2  moTg-l) (°C) Calcd. Found 

Ag(19)401 117.7 302 --- —  —  —  «•WW» 

Ag(19)41 116.1 302 2.6C — - - - — -

Ag(19)3ld 130.3 337 - - - - - - - - -

Ag(7J2CN 124.3 437 0 68-9 450 282® 

Ag(l)2l 119.3 507 0 85-8 561 58lf 

Ag(l)2Cl 121.2. 535 0 82-3 470 529^ 

Ag(D2N03 118.6 592 4.5 79-81 --- -  —  -

Ag(23)Cl 114.4 888 0 145-6 393 402® 

Ag(23)2Cld 118.4 614 --- — - - - - - - -

Ag(23)I 106.0 719 0 — - - - -  -  -

Ag(23j2ld 123.4 570 -  -  —  — - - -

Ag(23jCN 115.1 658 0 146 384 305® 

Ag(23)2N03 121.1 717 7.3 137 

^Measured in 75% CH2Cl2/25% dg-acetone at -95°. 

bpor 10~^ M solutions at 25° in CH2CI2. 

^Conductance was measured at -65°. Essentially zero conductance was 
measured at 25°. 

^Species was not isolated, but was observed in solution. 

^Measured in 1,2-dichloroethane. 

^Measured in THF. 
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temperature and low temperature spectra are needed to observe coupling. 

In contrast to Ag(4)X complexes where addition of two equivalents of 

phosphine resulted in the appearance of peaks in the NMR at -95° 

assignable to [Ag(£)2]^ and free ligand (17), addition of two molar 

equivalents of 2^to a solution of Ag(23)Cl resulted in the observation of 

peaks assignable to free ligand and Ag(23)?Cl at -95° in the NMR 

spectrum. Upon addition of 10 molar equivalents of _^to a solution of 

Ag(23)I, Ag(23)2l and ̂  were seen in the NMR spectrum. Between 180K 

and 200K, an equilibrium of type 8 was observed between Ag(23)I and 

Ag(23)gl with Ag(23)?I being favored at low temperatures. The Ag(23)9Cl 

Ag(23)I + ̂  = Ag(^2l (8) 

and Ag(23)9l species are assigned on the basis of their ^^P NMR spectra as 

nonconducting species in which the halide is coordinated. Both the ^^P 

NMR chemical shift and silver-phosphorus coupling for these two molecules 

differ as would be expected if the anions were coordinated. The silver-

phosphorus couplings in both molecules are significantly less than in 

[Ag(23)?]BFzL (Table 4) which also suggests the anions are coordinated. 

The ^^P NMR of Ag(23)CN with added free ligand could not be completely 

frozen out down to 178K. These results show that while ^ may not have 

the necessary basicity to displace halide from the inner coordination 

sphere as does 4, it is small enough to form tri coordinate complexes as in 

Ag(23)201. 
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The possibility of dimerization of the Ag(7.)2^ and Ag(23)X complexes 

in solution as well as in the solid state exists. Molecular weight 

measurements suggest that little if any association occurs in solution 

(Table 8). It is unwarranted, however, to draw any conclusions regarding 

the solution structure of these complexes at -95° from the osmometric data 

which were taken in different solvents and at a temperature 132° higher 

than that at which the NMR studies were performed. The monomeric 

character of these complexes at -95° is implied, however, by the value of 

the l^^Ag-31p coupling constants which for halide bridged four-coordinate 

dimeric complexes of the type [AgX(2)2]2 estimated to be 300-400 Hz 

and 400-500 Hz for [AgX(23)]^. Also supportive of monomeric species is 

the lack of four-bond metal-phosphorus coupling which is observed for 

halide bridged LgPtgX^ dimers (85). 

Addition of excess _7 orto ether suspensions of AgNOg resulted in 

the isolation of Ag(2)2^03 and Ag(23)2N03. In contrast to CAg(4)4]N03, 

which was shown to be a 1:1 electrolyte in CH2CI2 (17), solutions of 

Ag(2)2^^3 Ag(23)pN0i conduct to a much lesser extent as shown in Table 

9. The nitrate ion in these latter two complexes can be considered to be 

weakly coordinated. A relationship is seen between the cone angle of L 

and the conductivity of an AgL2N03 complex in CH2CI2 (Table 9) in which 

these parameters rise monotonically with each other until a large increase 

in equivalent conductance is realized with 4. 
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Table 9. Conductivity of AgL2N03 complexes as a function of the cone 
angle of L 

Cone Angle Equivalent Conductance 
of AgL2N03® 

^b 109 0.9 

145 3.9 

]_ 157 4.5 

172 7.3 

4C 182 52.6 

®In units of n'^cm^equiv~^ for 1 x 10"^ M solutions in CH2CI2 at 25°. 

^Reference 11. 

^Reference 17. 

Ligand Competition Experiments 

In an attempt to determine the relative importance of steric and 

electronic effects in the coordination of phosphorus ligands to silver(I), 

equilibrium experiments were performed in which four molar equivalents of 

a ligand L' were added to a solution of an [AgL^]^ complex. These 

experiments were followed by low temperature NMR spectral examination. 

In these experiments, the NMR signals for the bound ligands were never 

cleanly resolved doublet-of-doublet patterns, but were always somewhat 

broadened. Since the signals for bound ligand in these ligand competition 

experiments were rather broad and the coordination chemical shifts for 
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phosphorus ligands to Ag(I) are as a rule small, it was necessary that L 

and L' have NMR chemical shifts separated by about 15 ppm. 

The results obtained from these experiments show that while both 

steric and electronic effects are of importance in determining the 

relative affinity of phosphorus ligands for Ag(I), electronic effects are 

somewhat more important as illustrated by the ligation order: 

_15 >_25 =J27 = 14 > 9^ > _12 > 17 > J^6. 

It has previously been established that because of orbital constraint 

on the esteratic oxygens of phosphorus esters, basicity in addition to 

steric requirements decrease with increasing constraint in the order: 

2 > 2Ê. ^ 2L > l]_ > ̂  (6,59). However, no trend was seen in the relative 

affinity of Ag(I) for phosphorus ligands upon constraint, which shows that 

more favorable steric properties are counterbalanced by less favorable 

electronic properties upon constraint. The phosphines 12 and 14 have 

their more favorable basicity compared to the phosphite ligands offset by 

a larger steric requirement. The fact that _9 displaces _]7 from [Ag(17)/]]"*" 

is especially noteworthy in view of the fact that the opposite result was 

observed in the Ni(0) system (8). 

The importance of both steric and electronic effects was also 

illustrated in competition experiments between n_, _17_and The cone 

angles of _n_ and _2]^ are essentially the same, with _21 being significantly 

more basic (Table 3). The steric requirement of j^is less than the 

aforementioned two but its basicity is less than that of . Ligand 

displacement studies show that in the affinity for Ag(I): ^ 17 > 

JQ, _^ > . These results again illustrate the preferential binding of 
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Ag(I) to ligands which are small and basic. In the competition between 21 

and 2Land _1Z.3nd JJo coordination to the ligand which is more basic or is 

smaller was more favored as expected. In the competition between 21 and 

J7_where one ligand is more basic and one is smaller, the higher basicity 

of 21 overcame the steric advantage of 17. 

The three aminophosphine ligands 7_, j^^and 2^ offer another set of 

ligands of differing steric and electronic properties for comparing 

binding strengths to Ag(I). Molecular models show _7_and to be of 

nearly the same steric size while the cone angle of is reported to be 

much smaller than that of 1_ (Table 3). The value of lj31p_77gg the 

corresponding selenides show that the order of basicity of these 

aminophosphines is _^ > _1^ = (Table 3). Ligand competition experiments 

show that both ^ and will displacefrom Ag(I) demonstrating again 

that Ag(I) prefers igands which are small and basic. 

Addition of 4 molar equivalents of ^ to a solution of [Ag(23)^]BF4 

results in the complete displacement of ^to form [Ag(9j4]BF^, while 

addition of large excesses of _9 to [Ag(7_)2]BPh^ does not result in the 

displacement of the more basic T. Examination of the NMR of a 

solution which contains equivalent amounts of [Ag(7_)2]^^^4 and 2 shows 

that the resonance for Ji_is a much broadened singlet at 130 ppm (10 ppm 

upfield of the shift of the free ligand). This is indicative of weak 

interaction between _9_ and [Ag(7_)2]^. Addition of more 2 shifted the 

position of the resonance back toward 140 ppm. 
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X-ray Structure of [Ag(P(NMe2)3)23BPh4 

The solid state structure of the cation in [Ag(2)2]BPh4 is shown in 

Figure 4 and a drawing of the molecule is shown in Figure 5. The P-Ag-P 

moiety is bent with an angle of 167° and the silver-phosphorus distance is 

2.395(3)A (Tables 10 and 11). The cause of the bend is not apparent. 

Coordination of the tetraphenylborate anion would not be unprecedented 

(86,87), but no intermolecular contacts were found between the anion and 

the cation. In the structure of the two-coordinate.silver(I) complex 

[Ag(4)2]BF4, the P-Ag-P angle is nearly linear (179.4°) with a silver-

phosphorus bond distance of 2.461(6)A (18). It is believed that the 

extremely large cone angle of_4 precludes any bending of the P-Ag-P bond 

(18) although in [Au(16)p]PFfi where the ligand is small enough to permit 

additional coordination, the P-Au-P angle is also linear (88). The 

shorter Ag-P bond distance in CAg(7_)2]BPh4 is ascribed at least in part to 

the smaller steric requirements of 2 compared to _4. 

Both of the ligands in [Ag(2.)2]BPh4 are in an approximately Cg 

configuration (D) similar to one of the ligands in trans-Fe(C0)q(7)9 

wherein the most tetrahedral nitrogen has its lone pair roughly anti to 

the Ag-P bond while the other nearly planar Me2N groups are twisted in 

opposite directions (26). As was noted previously, a relationship exists 

between the sum of the bond angles around nitrogen (sN) and the nitrogen-

phosphorus bond lengths (Table 12). For example, is 346.9° and the 

NiA-Pl distance is 1.683A while the more planar nitrogen (sN jq = 

356.2°) is only 1.651A from PI, presumably because of more s character in 

its bond to PI. 



www.manaraa.com

54 

Figure 4. ORTEP drawing of [AgfTjg]* cation 
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Figure 5. ORTEP drawing of [AgfTjglBPh^ 
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Table 10. Interatomic distances and selected intramolecular contacts (A) 
and their estimated standard deviations (in parentheses) for 
CAg(P(NMeg)3)2]BPh4 

[Ag(P(NMe2)3)2]+ BtCeHj),-! 

Ag - Pj 2.395(2) B - C^ 1.643(9) 
Ag - P2 2.393(2) B - Cg 1.642(10) 

Pi - ^lA 1.683(7) B - Ci3 1.653(10) 

""l - "^IB 1.658(6) B - Ci9 1.641(11) 

Pi - Nic 1.651(6) Ci - Cg 1.399(10) 

P2 - N2A 1.655(6) Ci - Cg 1.405(9) 
P2 - Ngg 1.658(5) C2 - C3 1.401(9) 

P2 - ^2C 1.681(6) C3 - C4 1.380(10) 

^lA - ^1 1.473(11) C4 - Cg 1.369(11) 

NIA " ^2 1.475(11) h " ^6 1.389(9) 

NlB - C3 1.482(11) C7 - Cg 1.406(10) 

Nib " ^4 1.462(9) h '  ̂ 12 1.403(11) 

NlC - ^5 1.474(12) Cg - Cg 1.380(11) 

•^ic " ^6 1.479(9) Cg - Cio 1.392(14) 

N2A - C7 1.490(11) ^10 - ^11 1.363(15) 

N2a - Cg 1.465(9) ^11 - C12 1.396(10) 

N2B - Cg 1.485(8) Ci3 - Ci4 1.397(10) 

•^28 " ^10 1.475(9) Ci3 - Cjg 1.405(9) 

^2C " ^11 1.482(9) Ci4 - Ci5 1.415(11) 

^2C " ^12 1.504(10) ^15 - ^16 1.358(12) 

Ci ••• C3 4.161(12) ^16 • ^17 1.382(13) 

Ci ••• C4 3.316(12) ^17 - C18 1.404(10) 

C2 ••• C5 4.193(13) Cig - C20 1.400(10) 

C2 ••• Ce 3.363(14) Cig - C24 1.412(9) 

C3 ''' C5 4.210(12) C20 - C21 1.380(14) 

C4 ••• Cg 3.386(13) C21 - C22 1.392(15) 

C7 ••• ClO 4.076(11) C22 - ̂ 23 1.364(15) 

C7 ••• Cii 4.252(11) C23 - C24 1.387(12) 

Cg ••• Cg 3.410(10) 

Cs ••• Cii 3.369(11) 

Cg ••• C12 3.427(11) 
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Table 11. Bond angles (deg) and their standard deviations (in 
parentheses) for [Ag(P(NMe2)3)2]BPh4 

[Ag(P(NMe2)3)2]+ ' BfCGHg)^-! 

P2 - Ag - Pi 166.9 1) C^ - B - Cy 110.5 5 
Ag - Pi - •^lA 116.4 2) Cl - B - Ci3 108.3 5 
Ag - Pi - "^IB 113.2 2) Cl - B - Ci9 109.5 6 
Ag - Pi - •^ic 109.1 2) C7 - B - Ci3 110.4 6 

•^lA • P i  • "^IB 100.6 3) Cy - B - Cig 108.5 5 

•^lA - P i  - "^IC 101.4 3) Ci3 - B - Ci9 109.7 5 

•^IB • P i  " ̂ IC 115.6 3) B - Cl - Cg 123.1 6 
Ag - P2 - '^2A 108.2 2) B - Cl - Cg 122.5 6 
Ag - P2 - 114.8 2) Cl - Cg - C3 123.0 6 
Ag - P2 - '^2C 116.5 2) Cg - C3 - C4 119.7 7 

^2A - P 2  - "^28 114.2 3) C3 - C4 - C5 119.4 6 

'^2A - P 2  ~ '^2C 100.9 3) C4 - Cg - Cg 120.3 7 

"^26 - P 2  ~ '^2C 101.7 3) C5 - Cg - Cl 123.1 7 

Cl - •^lA - C 2  112.8 7) ^6 - Cl - Cg 114.4 6 

Cl - •^lA - Pi 117.3 5) B - Cy - Cg 122.8 6 

Cg - hh - Pi 116.8 6) B - Cy - C12 122.4 6 

^3 - ^18 - C4 114.1 6) C7 - Cg - Cg 123.1 8 

C3 - I^IB - Pi 118.8 5) Cg - Cg - ClO 120.0 8 

C4 - '^IB - Pi 121.5 5) Cg - ClO - Cil 119.2 8 

^5 - •^ic - Ce 113.8 6) ClO - Cil - Cig 120.3 9 

G5 - "^IC - P i  119.8 5) Cil • C12 " C7 122.7 7 

^6 " "^IC - Pi 122.6 6) Cig - Cy - Cg 114.7 6 

h - ^2A ~ Cg 113.4 6) B - Ci3 - Ci4 123.6 6 

h - '^2A - P2 118.7 5) B - Ci3 - Cig 122.1 6 

Gg - '^2A - P2 124.3 5) Cl3 " Cl4 - Ci5 123.1 6 

Cg - - Cio 113.0 5) Cl4 " Ci5 - C16 120.0 8 

^9 " ̂ ^28 - P2 120.9 4) Cl5 " C16 - Ci7 119.8 8 

^10 " ̂2B - P 2  118.4 5) C16 • Cl7 " C18 119.6 7 

^11 " '^2C - C12 110.9 5) Cl7 " C18 " Ci3 123.3 7 
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Table 11. (Continued) 

[Ag(P(NMe2)3)2]+ 

Cii - N2C - P2 115.2(5) 1̂8 - ̂ 13 - Ci4 114.3(6) 

1̂2 - ̂ 20 - ̂ 2 116.4(4) B - Ci9 - 2̂0 122.7(6) 

B - Cl9 - C24 121.9(6) 

Cig 0
 

ro
 

0
 

" ̂ 21 121.8(7) 

0
 

ro
 

0
 

- ̂ 21 

1 0
 

ro
 

ro
 120.8(9) 

2̂1 

CV
J 

CV
J 0
 • ̂23 119.4(10) 

C22 - ̂ 23 - C24 119.6(8) 

2̂3 - C24 - Ci9 123.0(7) 

C24 - ̂ 19 - C20 115.4(7) 

Table 12. Phosphorus-nitrogen bond distances (A) and sum of angles around 
nitrogen (deg) in [Ag(7_)2]BPh4 

P-N EN 

lA 1.683 346.9 

IB 1.658 354.4 

IC 1.651 356.2 

2A 1.655 356.4 

28 1.658 352.3 

'2c 1.681 342.5 
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The P-N bond lengths show evidence of it bonding between the 

phosphorus and nitrogens. From the Schomaker-Stevenson empirical 

correlation 

+ Tg - 0.09 - Xg) (9) 

r^,rg = covalent radii X^.Xg = electronegativities 

it is estimated that a nitrogen-phosphorus single bond has a length of 

1 .76 A (89) ,  wh i le  the  average P-N d is tance in  [Ag(7_)23BPh4 i s  1 .66 A, 

suggesting that the phosphorus-nitrogen bond is strengthened by % 

interaction. The poor ir acceptor properties of tris(dialkylamino)-

phosphines have been attributed to the fact that the d orbitals on 

phosphorus in these ligands are involved in tt interaction with the 

nitrogens which renders the ligands poor ir acids in their metal complexes 

(90-92). It is seen that the sX values for 7_and^in Table 3 are 

smaller than those of some phosphines while the ^J^^SeP values for the 

corresponding selenides lie between the value seen for phosphines and 

phosphites as expected. The reason for this may be that sX is a partial 

measure of ir acceptor ability of the ligand while the selenium-phosphorus 

coupling constant measures the positive charge on phosphorus. It is 

possible that nitrogen-phosphorus n bonding affects the former more than 

the latter. 

Cowley argues that the longer average P-N bond distance (1.673A) in 

trans-Fe(C0)ct(7)g compared to that in Fe(C0)4(7_) (1.664A) is due to 

increased Fe-P ir bonding in trans-Fe(C0)'^(7)p which leads to decreased P-

N ir bonding (25). On the basis of this model, one might expect the P-N 
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bond distance in [Ag(7_)2]BPh^ to be shorter than in Fe(C0)4(7) since the 

positively-charged silver(I) might be expected to be a poorer tt base than 

Fe(0). The average P-N distance in [Ag(7_)2]BPh4 (1.664A) is essentially 

the same as in Fe(C0)4(7_), however. 

Both ligands in [Ag(7_)2]BPh4 exhibit one larger and two smaller N-P-N 

bond angles (Table 11). In each ligand the largest N-P-N bond angle is 

between nitrogen atoms which are closest to trigonal-planar geometry. 

This large NPN angle arises from the greater repulsion of the 

predominantly 2p lone pairs which are pointed toward one other. This 

trend was also noted by others (25,26,30,31,33,34,36). On each ligand, 

two of the carbons are involved in two rather short intramolecular carbon-

carbon contacts (C^, Cg, Cg and Cg). It is seen that these four carbons 

•have the four largest P-N-C angles which may be due to a crowding effect 

(Table 10, Table 11). This relationship is not seen, however, in the two 

structured Fe complexes of 1_ (24,25). 

From the structural data it can be concluded that*because of 

similarities in the structures of various PN3 compounds, the ligand 

conformations observed are not determined by lattice effects. The present 

results also lend further credence to conclusions from theoretical work 

which suggest that structures C and D are the most stable conformations of 

tris(dialkylamino)phosphines with the energy difference between the two 

being rather small. Finally, the bulk of the structural data indicates 

that tris(dialkylamino)phosphines are not idealized symmetrical structures 

but that at least in the solid state they prefer a configuration where one 

of the nitrogens is pyramidal. 
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PART II. NMR STUDIES OF PHOSPHORUS LIGAND COMPLEXES OF COBALT 
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INTRODUCTION 

The 59co nucleus at least in a historical sense can be considered as 

one of the most important nuclei in the development of NMR spectroscopy. 

In 1951, six years after the discovery of the NMR experiment. Proctor and 

Yu found that the resonance frequency of cobalt compounds could vary as 

much as 1 part in 100 depending on the compound selected for measurement. 

Since they were attempting to measure the magnetogyric ratio of ^®Co, this 

effect was thought to be a nuisance and was called the most derogatory 

term the two scientists could think of, namely, "the chemical shift". The 

development of the many applications of NMR spectroscopy by chemists stems 

from a phenomenon which annoyed two physicists (93,94). 

The properties of the ^^Co nucleus make it idealy suited for NMR 

observation. In addition to a 100% natural abundance it has a rather 

large magnetic moment, giving it a relative sensitivity of 0.281 with 

respect to for equal numbers of nuclei of constant field. These two 

factors place ^^Co in the top six nuclei for ease in detection. A nuclear 

spin of 7/2 along with a quadrupole moment of 0.40 x 10'^® m^ makes ^%o 

NMR linewidths sensitive to electric field gradients at the ^^Co nucleus. 

The absence of reports of ^^Co NMR data for Co(I) compounds can be 

attributed to the large electric field gradients expected for these five-

coordinate complexes. 

Chemical shifts of ^^Co compounds span a very wide range. The 

chemical shift of [00(003)3]^" is the furthest downfield ever reported 

(14,000 ppm downfield from CCo(CN)5]^") with the shift of CCo(PF3)4]" 
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(-1,400 ppm) being the most upfield (94). The wide range in chemical 

shifts is due to the large variance in the paramagnetic term in the 

shielding tensor 

Op = (-32g2/AE < r^-3>) (10) 

Inclusion of the diamagnetic contribution of the cobalt ion (which is 

thought to be constant) into equation 10 gives 

df^Co = oy + Op = (e^/3mc^E <r.-l> + 323^(K)^<r^-3>AE"^ (11) 

where i denotes all doubly occupied orbitals, < (the orbital reduction 

factor) is the coefficient of the d^Z and dj^2_y2 atomic orbitals, r^ is 

the cobalt d-orbital radius, g is the Bohr magneton, and aE is the singlet 

triplet excitation energy. From equation 10, it is seen that a plot of 

the 59co nMR chemical shift vs the lowest energy d-d transition for a 

2 2 series of cobalt complexes should have a slope of 32$ (<) <rj-3> and an 

intercept of the shielding of a hypothetical Co^"*" ion with a 

spherically symmetrical charge distribution for which the term is zero. 

Indeed, many early workers in the field noted a rather linear 

relationship between the energy of the lowest energy d-d transition and 

the NMR resonance for Co(III) complexed to six carbon, nitrogen or 

oxygen donors (94). Later, a number of authors noted departures from the 

above correlation for S, Se and As donor ligands. These deviations from 

the first-row donor plot were associated with an increase in the metal-

ligand distance corresponding to a decrease in Kr^-S) where r^ is the 

cobalt d-orbital radius (94). The inclusion of data for [Co(P(0R)3)g]3^ 
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compounds showed that the intercepts of the plots of the first and second 

period ligators were not the same (95). The ratio of the intercepts of 

the first and second row elements given by z <r,--l>i/E <rz-l>? = 1.60 
i i 

strongly suggested that cobalt radius changes are important in comparing 

correlations involving ligands from different periods (95). . 

JuraniC later noted that the difference between the intercepts of the 

first- and second-row ligators corresponds to a difference in the 

dimagnetic shielding constant which is as large as 0.005 while a previous 

estimate of the diamagnetic shielding constant value gives = 0.0021 

(96,97). He thus suggests that one or both of the correlations are 

accidental (96). 

Recently, JuraniC noted that in complexes which contain a greater 

amount of covalency in the cobalt ligand bond, the paramagnetic 

circulation from the T^g < A^g electronic transition deshields the 

cobalt nucleus less effectively because the circulation is driven away 

from the ligands. He defined a term which he called the circulation-

removing ratio which was dependent on the electronegativity of the donor 

atoms. For ligators of the same electronegativity, plots can be drawn of 

^%o NMR chemical shift against the energy of the lowest d-d transition 

which all have the same intercept. Thus, for example, the line containing 

phosphorus and arsenic donors has a correlation coefficient of 0.98 

(98). It is for this reason that ^®Co NMR can be used as a probe of 

ligand field in complexes of the type [CofP)^]^* where P refers to a 

phosphorus donor atom. 
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It was of interest to study the ligand field properties of phosphites 

in complexes of the type [Co(P(0R)3)g]3+ to see if a relationship could be 

found between the effective ligand field of the complexes and the steric 

and/or electronic properties of the ligands. The complexes studied herein 

were prepared by the disproportionation reaction 12 which was first 

reported in 1962 for an analogous reaction where J^was reacted with 

[Co(H20)6](C104)2 (14). Since that time, it has been found that 

2[Co(H20)s](BF4)2 . Ill i;,i;.diL1hg"̂ 'propane> KoL63(BF4)3 

+ [CoLgDBF* (12) 

reaction 12 proceeds with other bicyclic phosphites (99,100), monocyclic 

phosphites (95), the acyclic phosphite (2) (15), as well as the chelating 

phosphonites and Jl^ (101). The absence of [Co(PR3)6]^^ complexes has 

been attributed to the relatively poor pi bonding capability of phosphines 

in spite of their high sigma basicity (102). Recently, however, a complex 

of the bidentate phosphine ^ of the type [CoLg]^* has been reported 

(103). The instability of [Co(PF3)6]3+ has been rationalized as being due 

to the insufficient basicity of PFg to neutralize the charge on the metal 

(102). 

In addition to the aforementioned examples, the only other report of 

Co(III) coordinated to phosphite ligands has been in complexes prepared by 

reactions 13 and 14 (104). The finding that 2^and 33 do not react with 

CO(SCN)2 + 9(9) > [00(2)5]"^ + [cis-Co(NCS),(9)4]+ + 2 SCN" (13) 

2 CO(NCS)L4 + 2N0 > [CoL2(N0)2]+ + [Co(NCS)2L4]+ + 2 L (14) 
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Co(SCN)2 by equation 13 probably stems from the larger steric requirement 

of these ligands compared to 

In metal complexes wherein the ligands have empty pi orbitals of 

higher energy than the metal Tgg orbitals, an interaction can take place 

which stabilizes the metal Tgg orbitals with respect to the metal Eg* 

orbitals. The net result of this interaction is an increase in ligand 

field. Although phosphite ligands are thought to be good pi acceptors, it 

is questionable whether the small highly charged Co(III) ion is 

sufficiently pi basic for this effect to be seen. Steric factors can also 

have consequences in terms of the ligand field of metal complexes. For 

example, increasing methyl substitution on a diamine chelate shifts 

to lower energies in complexes of the type [CuLgDfClO^jg (105) and 

[NiL3](C104)2 (106). The small size of the Co(III) ion should serve to 

enhance the importance of steric efects. 

Since a ^^Co NMR shift can be measured to a greater degree of 

precision than a uv band (and many [Co(P(0R)3)g]3+ complexes display their 

lowest energy d-d bands in or near the charge transfer region of the uv) a 

®^Co NMR study of [Co(P(0R)3)g]3^ complexes was undertaken to investigate 

the relative importance of steric and electronic properties in determining 

the effective ligand field in [Co(P(0R)3)g]^'^ complexes. 

Recently, some work along these same lines has appeared. An 

investigation of the effect of steric and electronic properties of 

phosphorus ligands on metal NMR shifts has been reported by Rehder and co

workers (107). Complexes of the type [M(C0)g_pL^]'l (M = V,Nb: q = - 1; 

M = Mn: q = + 1; n = 0 - 6), n®-C5H5M(C0)4_^L„ (M = V,Nb; n = 0 - 4) 
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and = V, L' = NO; M = Mn, L' = CO) were studied by 

^^Mn and ^^Nb NMR, respectively. In general, it was found that there is a 

decrease in shielding with decreasing pi acceptor ability of the ligand 

and increasing ligand bulkiness. An interesting exception was found 

in n^-C5H5Mn(C0)2L complexes where the ^^Mn NMR chemical shift was 

virtually independent of the ligand L. This was attributed to the large 

splitting of the Mn-3d orbital s in these complexes (108) which reduces the 

changes in aE upon subsitution of L. It is of interest to compare the 

results obtained by these authors on complexes which are for the most part 

low symmetry, low valent organometallic complexes to [CoPg]^^ complexes 

where more pronounced trends may be expected since the coordination of six 

sites can be varied in contrast to only one or two and the range of 

S^Co NMR chemical shifts is much larger than those of ^^V,^^Mn and ^^Nb 
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EXPERIMENTAL 

Procedures 

UV-visible spectra were recorded on a Perkin Elmer 320 spectrometer. 

Cobalt-59 (70.85 MHz) and ^^P (121.51 MHz) NMR spectra were recorded on a 

Bruker WM-300 spectrometer operating in the Fourier mode while locked on 

the ^H resonance of deuterated solvents and referenced to aqueous 

K3[Co(CN)g] and 85% H3PO4, respectively, with positive shifts defined as 

being downfield. Carbon-13 (23.5 MHz) and ^H (89.55 MHz) NMR spectra were 

recorded on a JEOL FX-90Q spectrometer operating in the Fourier mode and 

referenced to Me^Si. 

The T^ values of ^%o and ^^P were measured by the 180-T-90 technique 

as described by Becker (109). For the measurements of T^ of ^^Co a 

sweepwidth of 100,000 Hz was used incorporating 8192 data points with an 

acquisition time of 0.082 sec while for the measurements of T^ of ^^P, a 

sweepwidth of 10,000 Hz was used incorporating 16,486 data points with an 

acquisition time of 0.819 sec. Recovery times were chosen that were a 

minimum of 5 times the Tj values. Data acquisition was performed by the 

computer T]^ program. The peak heights were measured by hand. Analysis of 

the data was accomplished by least-squares fitting of the semilog plot 

In(S^-S^) against t, whence the inverse slope provides the -T^ value 

(S^ = equilibrium signal intensity, = signal intensity at time t). 
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Materials 

All solvents were dried over molecular sieves before use. Et20 was 

distilled from potassium/benzophenone. [Co(H20)g](BF4)2 was obtained from 

Alfa Products. 2,2-Dimethoxypropane and ^were purchased from Aldrich 

Chemical, while 32, 35 and 36 were purchased from Strem Chemicals. 

N,N'-dimethylurea was purchased from Fluka. 

Preparation of Compounds 

CIPOCH2CH2O (3^ 

This phosphorochloridite was prepared as described by Lucas and co

workers (110) with the exception that the glycol was slowly added to a 

solution of PCI3 instead of simultaneous addition of the two reactants. 

ROPOCH2CH2O (R = Et(^, R = n_-Pr(39), R = n_-Bu(40), R = _i-Pr(41^), 

R = j_-Bu(4^, R = sec-Bu(43), R = t_-Bu(_M), R = Ph(^), R = CF3CH2(46) 

R = N(CH2CH2)20 (47) 

These ligands were prepared from_37 and the appropriate alcohol or 

amine in yields of approximately 80% following the method of Lucas 

(110). • Boiling points and ^^P NMR are given in Table 13. 

CH30P0CH2CH(CH3)0 (48a,b) 

This monocyclic phosphite was prepared as described by Denney and co

workers (111). Although the separation of the two possible isomers (cis 

and trans methyl to methoxy) can be achieved by gas-liquid chromatography 
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Table 13. Boiling points and NMR chemical shifts of 2-substituted 
1,3,2-dioxaphospholanes 

Bp °C Bp °C 

(lit) 

ô 31pa S 3ip 

(lit) 

IZ. bi = 40 bl5 = 46.5b 167.3 166.6 - I68.4C 

: "^5 = 35 ^35 = 60-2b 130.4 131.6 - 132.4^ 

40 ^21 = 60-6lb 131.6 I3I-4C 

39_ bg = 45 bso = 84-6b 131.8 132.0, 134.4C 

12. bl = 55 ^25 = 90b 131.8 I32-3C 

11 blO = : 75 ^20 = 64-6b 132.1 

li bg = 52 b25 = 97b 131.2 134.ic 

11 bs = 50 ^25 = 83b 132.3 ---

11 •^5 = 52 ^25 = 74b 132.9 

11 bl = 90-100 bo.3 = = 73d 128.5 120 - 29C 

11 bs = 37 137.6 ---

IZ. 137.9 ---

11 ^5 = 50-2 b23 = 53-59® 137.6, 141.3? 139, 142® 

11 bs = 45 --- 170.9, 171.8 ---

11 ^5 = 45-50 --- 140.0 140® 

11 ^3.5 = 52-5 140.1 -  — —  

11 bs = 52 139.0 ---

^In ppm downfield from 85% H3PO4. Measured in (CDgjgCO unless 
otherwise indicated. 

'^Reference 110. 

^Reference 53. 

^D. C. Ayres and H. N. Rydon, J. Chem. Soc., 1109 (1957). 

^Reference 111. 

fMeasured in CDCI3. 
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Table 13. (Continued) 

Bp °C Bp °C 

(lit) 

6 31pa 6 

(lit) 

53 bg = 45 M W 139.8 mm mu m» 

bg = 50 bg = 33® 148.1 147® 

_55 bioo ^ bi7o = 489 124. ih 124.49,1 

56 bi = 85 162.0 162 

57 11 0
 

191.7 

^Reference 112. 

hljPF = 1223 Hz. 

iljPF = 1260 Hz. 

for analytical purposes (111), separation of the macroscopic quantities 

required herein was not carried out. 

dl-meso-ClPOCHCHqCHCHqO (^) 

This phosphorochloridite was prepared from PCI3 and 2,4-pentanediol 

by the method of Denney and co-workers (111) with the modification that 

EtgN was used as a base instead of N,N-dimethylanaline. 

d^jMeOPOCHCHgCHCHgO (50^) 

This phosphite was prepared in 17% yield by transesterification of _9 

with 2,4-butanediol as described by Denney and co-workers (111). 
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Distillation through a 2" Vigreaux column resulted in the ̂  isomer being 

obtained in greater than 95% isomeric purity. 

dlj&OPOCHCHgCHCHsO (R = Et (^), R = n^Pr (^), R =_i_-Pr (^) 

These phosphites were prepared by the reaction of equivalent amounts 

of 42and the appropriate alcohol in ether in the presence of EtgN as 

described by Denney and co-workers (111). Distillation through a 2" 

Vigreaux column resulted in obtaining the cn_phosphites in greater than 

95% isomeric purity. 

CHgOPOCfCHsjgCfCHgigO 

This phosphite was prepared by using the modification described by 

Vande Griend (59) of the procedure originally described by Denney and co

workers (111). 

FPOCH2CH2O (^ 

This.compound was prepared by the method of Schmutzler (112). 

PhP0CH2CH20 (^) 

To a solution of PPhCl2 (20.3 g, 113 mMol) in 500 ml of Et^O and 40 

ml of EtgN was added dropwise over a period of 15 minutes ethylene glycol 

(7.01 g, 113 mMol). The product was distilled in 79% yield after 

filtration of the precipitated EtgN'HCl (b^ = 85; ^^P NMR (CDCI3) 162, 

lit. 162 (113)). 
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EtPÔcH2CH20 (^) 

To a solution of PEtClg (9.0 g, 59.2 nMol) in 300 ml of EtgO and 20 

ml of EtgN was added dropwise ethylene glycol (4.5 g, 72.5 mMol). The 

EtgN'HCl was filtered and the very air sensitive compound was distilled in 

48% yield. 

J , 
0=G(NMeP0CH2CH20)2 (^) 

In a 1000 ml round bottom flask was dissolved (31.6 g, 250 mMol) 

in 300 ml of CH2CI2. To this solution was added EtgN (29.0 g, 286 

mMol). Then N,N'-dimethylurea (10.0 g, 114 mMol) in 50 ml at CH2CI2 was 

added dropwise over a period of one-half hour. After the addition was 

complete, 50 ml of Et20 was added. The precipitated EtgN'HCl was filtered 

and the solvent was evaporated under reduced pressure. The product was 

obtained in 66% yield following recrystallization from a solution of 15% 

CH3CN, 55% Et20 and 30% hexanes (31p NMR (CD3CN) 138.0; NMR (CD3CN) 

4.4-4.Om 4H OCH2, 2.63t 3H NCH3 j^JPH + ^OPHj = 1.7 Hz; NMR (CÛ3CN) 

118.2 C=0, 66.5 CH2, 29.1 CH3; a parent ion could not be seen in the mass 

spectrum). 

P(SMe)3 (^ 

This ligand was prepared as described previously (114) (b^ = 65°; ^^P 

NMR ((003)2:0) 123.9, lit. 125.6 (115)). 
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As(0Me)3 (60) 

This ligand was prepared in 18% yield by the method described by 

Moedritzer and Van Wazer (116) (bygg = 130-4, lit. bygg = 129-30 (116)). 

AsfOCHgjgCCH] (61,) 

This ligand was kindly supplied by Dr. R. A. Montag who used a 

procedure described previously to prepare it (117). 

CIPOCHGCHGS (62) 

This phosphorochloridite was prepared as described by Bergesen, 

Bjor0y and Gramstad (118) (b2 = 55°, lit. bq^ = 57° (118)). 

MeOPOCH^CHp (^) 

In 200 ml of Et20 and 25 ml of Et^N was dissolved_62 (15.0 g, 102 

mMol). To this solution was added MeOH (4.50 g, 140 mMol). After 

filtering off the precipitated EtgN'HCl _63 could be distilled in 82% 

yield. Although two peaks were reported for the NMR of ^ (119) which 

was attributed to two configurations of the five-membered ring (118,119); 

only one peak was seen in the NMR of ^ (b^ = 60°; NMR (CDCI3) 

170.3). 

CgH/j-o-OgPCl (65) 

This precursor was prepared by the method of Crofts, Markes and Rydon 

(120) (bg = 65°, lit. bgo = 90° (120); ^^P NMR (CgDg) 172.8). 
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C6H4-o.-02P0Me (^) 

This phosphite was prepared as originally described by Arbuzov and 

Valitova (121) (bg = 55-7, lit. bg = 73 (121); ^Ip NMR ((CDgjgCO) 127.7). 

PtCHgCHgCN)^ (^) 

This ligand was kindly supplied by Dr. Phil M. Stricklen who used the 

method of Vullo to prepare it (122). 

(MeO)2PCH2CH2P(OMe)2 (68) 

This diphosphonite was prepared from ̂  and MeOH by using the method 

of King and Rhee (123) (bg.s = 66-70, lit. bg.oy = 60-64 (123)). 

P(0CH2)3CCH3 (18) 

This bicyclic phosphite was prepared as was previously described 

(39). 

P(0CH)3(CH2)3 (69) 

This phosphite was prepared as previously described (124). 

ÇH2OPOCH2CH2ÇHÔ (72) 

This phosphite was also prepared by a literature procedure (125). 

AX-MEOPOCH(CH3)EQCH2CH(CH3)GQO (71) 

This ligand was synthesized as reported previously (50). 
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eq-MeOPOCH(CH3jgqCHgCH(CHgjgqO (72) 

ax-MeOPOCH (CH3ieqCHgCHgO (73), ax-n_-Pr0P0CH(CH3)gqCH2CH20 (24), 

eq-MeO&OCH(CH3)gqCH2CH2Q (75j, eq-_n,-PrOhcH(CH3)eqCH2CH2Ô ( 7 6 )  

These compounds were prepared by the general method of Bodkin and 

Simpson (127)for the preparation of 2-alkoxy-4-methyl-l,3,2-

dioxaphosphorinanes with the modification that £_-to1uenesulfonic acid was 

used to isomerize the unstable to the stable Isomers (74, NMR 

(003)200) 125.7; 7^, 31p NMR ((003)2^) 130.5). 

Me0P00H20H2CH20 (77) 

This phosphite was prepared according to a literature method (7). 

[0o(30)3]3(BF4)3 and [00(31)333(BF4)3 

These complexes were prepared by Dr. Richard Weiss following the 

procedure described by Meiners (128). 

[00(32)31(0104)3 

This complex was prepared as previously described (103). 

[0o(DMS0)6](BF4)2 

This compound was prepared as previously described (129) for the 

perchlorate salt. 
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W(C0)4(^) 

In 15 ml of dry degassed THF was dissolved W(C0)5 (0.100 g, 0.284 

mMol) and _58_ (0.200 g, 0.746 mMol). This solution was placed in a quartz 

photolysis tube equipped with a cooling probe and was irradiated with uv 

light at 254 nm for a period of 3 hrs at room temperature using a reactor 

obtained from Bradford Scientific, Inc., Marblehead, Mass.. The greenish 

solution was removed from the photolysis tube and the solvent was removed 

under reduced pressure. A small amount of colorless residue remained 

after repeated extraction with CH3CN (~ 10 mg). This residue was 

insoluble in all common organic solvents. It was identified as W(C0)a(58) 

on the basis of parent ion peaks at 562, 564 and 566 m/e in the low 

resolution mass spectrum. 

SeP(0R,)3 

Selenophosphates were prepared by the method which Kroshefsky used to 

prepare SeMe0P0CH2CH20 (7). Because of the expected instability of the 

selenides of the five-membered rings (7) and the fact that only NMR 

parameters were desired from these compounds, they were not purified by 

sublimation or column chromatography. NMR chemical shifts of the 

selenophosphates discussed in this section are given in Table 14. Whgn an 

attempt was made to prepare the diselenide of ^ in this manner, the ^^P 

NMR of the crude product showed the major species had a chemical shift of 

108.7 ppm, but two selenium coupling constants were observed in nearly 

equal intensity (786 and 964 Hz). In comparison, SeP(CH3)(GCH3)2 is 
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Table 14. NMR chemical shifts of selenophosphates 

Parent phosphite 6 ^^P (ppm)^ 

27 90.5 

^ 85.5 

39 85.5 

^ 85.8 

41 84.9 

^ 84.6 

^ 82.9 • 

4^ 90.4 

48a.b 86.9, 87.1 

^ 82.6 

^ 82.6 

^ 82.0 

_70 80.9 

6^ 70.5 

74 70.4 

^Measured in CD3CN. 

reported to have a ^^P NMR chemical shift of 102.3 ppm and a phosphorus-

selenium coupling constant of 861 Hz (130). No further characterization 

of this product(s) was carried out. 

Pt(cod)l2 

This compound was prepared as described by Clark and Manzer (131). 



www.manaraa.com

79 

cis-Pt(41)91, 

In 30 ml of CH2CI2 was dissolved Pt(cod)2l2 (1.26 g, 2.25 mMol). To 

this solution was added 4^ (1.20 g, 8.00 mMol). The reaction was allowed 

to stir for one-half hour. The solvent was removed under reduced pressure 

and the product was obtained in 33% yield after chromatography through 30 

g of silica using CH2CI2 as eluant (31p NMR ((003)2:0) 92.1 Ijl95pt31p = 

5480 Hz; NMR (CD3CN) 4.3-4.8m 5H CH CH2, 1.40d 6H CH3 ZjHH = 6 Hz; 

NMR (CÛ3CN) 74.8 CH, 67.7 CH2, 23.7 CH3). 

[Ni(4jJ5](C104)2 

This compound was prepared by a procedure given for the preparation 

of complexes of the type [NI(P(0R)3)5](C104)2 reported earlier (15). In 

10 ml of acetone and 10 ml of 2,2-dimethoxypropane was dissolved 

[NI(H20)g](C104)2 (0.220 g, 0.825 mMol). To this solution was injected 41 

(1.00 g, 6.67 mMol). Immediately, a yellow precipitate fell from 

solution. The product was filtered under nitrogen and recrystallized in 

85% yield from acetone/ether. (^Ip NMR ((003)2:0) 100.8; NMR (CD3CN) 

75.5 CH, 68.0 CH2, 23.6 CH3; ^H NMR ((003)200) 4.3-4.8m 5H CH CH2, 1.43d 

OH3 6H ZjHH = 6 Hz). 

Preparation of [Co(P_)5]^"'' and [Co(P^)g]'*' Complexes by 

Disproportionation of Co(ll) 

Co(II) was disproportionated by two methods. In method A, 

[Co(H20)5](BF4)2 was dehydrated with 2,2-dimethoxypropane. In method B, 
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[Co(DMS0)g](BF4)2 was used as the starting complex. An example is given 

of each method of preparation. 

Method A 

This method has been described by Piper and Verkade for the 

preparation of [Co(J^g](C10/^)3 and [Co(18)s]C104 (14). To a solution of 

[Co(H20)5](BF4)2 (1.08 g, 3.17 mMol) in 15 ml of acetone and 15 ml of 2,2-

dimethoxypropane was injected ̂  (4.74 g, 31.7 mMol). The initially red 

solution became lemon yellow within 5 seconds after the addition of liquid 

and yellowish impure [Co(27)fi](BF4)^ precipitated from solution. The 

[Co(27)g](BF/|)3 was filtered and washed with CH2C12. Essentially pure 

colorless [Co(27)^](BF4)i was obtained in 82% yield after two 

recrystallizations from CH3CN/THF. 

The filtrates were combined and the solvent was removed under reduced 

pressure. The residual yellow [Co(27)s]BF4 was redissolved in CH2CI2 and 

precipitated in 71% yield upon addition of EtgiO. 

The following ligands were reacted in this manner to produce 

[Co(P)6]3+ and [Co(P_)5]"*' compounds: % _11, _1^, _38, _68, 

7L 72, 73, 74, 7^ and 77, 

Method B 

This method avoids the presence of MeOH in the reaction which 

introduces an interesting phenomenon in certain cases (vide infra). To a 

solution of [Co(DMS0)g](BF4)2 (1.60 g, 2.28 mMol) in 20 ml of CH3CN was 

injected (3.50 g, 23.3 mMol). The initially red solution quickly 

became yellow. Addition of 30 ml of THF followed by 20 ml of EtgiO 
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resulted in the precipitation of impure yellowish [Co(41^)5](BF/^)3. Two 

careful recrystallizations of the product by slow addition of THF to an 

acetonitrile solution of the impure product resulted in the precipitation 

of pure colorless [Co(4Jjg](BF/^)3 in 70% yield. 

The filtrates were combined and the solvent was removed under reduced 

pressure. Attempts to crystallize [Co(41)c;]BF4 failed. The following 

ligands were reacted with Co(II) in this manner to yield [Co(P_)5]^''" and 

[Co(_P)5]"*' compounds _39? 4^ 4^ ^ ^ 22^"d 77. In all cases the 

[Co(P_)5]BF/^ compounds prepared by reaction B could not be crystallized, 

but could be isolated as impure yellow oils upon precipitation from CH2CI2 

solution by the addition of EtgO. 

[Co(41_)5]N03 

To a solution of Co(N03)2*6H20 (1.0 g, 3.36 ntflol) dissolved in 10 ml 

of CH3CN and 20 ml of 2,2-dimethoxypropane was injected ̂  (5.00 g, 33.3 

mMol ). The solution immediately became yellow. Slow addition of EtgiO 

resulted in the precipitation of the golden yellow [Co(41)s]N03 in 80% 

yield (^^P NMR (CD3CN) 165.3). 
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RESULTS AND DISCUSSION 

Preparation of Phosphorus Ligand Complexes 

of Cobalt(III) 

Complexes of the type [CoPg]^^ were prepared by three methods. The 

first reaction involves the disproportionation of [Co(H20)5](BF4)2 by 

phosphite ligands in acetone/2,2-dimethoxypropane as shown in equation 12. 

Upon addition of ligand, the less soluble [Co(P)6](BF4)3 complex 

precipitates from solution and thus can be separated from the more soluble 

[Co(P)5]BF4 complex. 

As will be discussed later, this method was found to be unsuitable 

for a number of ligands because of catalytic methanolysis of the ligands 

with the methanol formed by the dehydration of [Co(H20)g](BF4)2 by 2,2-

dimethoxypropane. To circumvent this problem, CCo(H20)6](BF4)2 was 

replaced as starting material with CCo(DMS0)g](BF4)2 and the reaction was 

run in acetonitrile solvent. The [CoL5](BF4)3 complexes precipitate 

CHqCN 
[Co(DMS0)6](BF4)2 + 11 L > [CoL6](BF4)3 + [CoL5]BF4 (15) 

from solution upon addition of THF. 

The diphosphine complex [Co(32)i](BFA)q was prepared in a two step 

procedure as described by Ohishi, Kashiwabara and Fujita wherein Co(II) is 

oxidized by CI2 to Co(III) in the first step (103). 

2 ^ + CoCl2*6H20 + 1/2 CI2 + NaC104 > [trans-Co(32)9CloJCIOa 

+ NaCl (16) 

[trans-Co(32)Cl2]C104 +^ + 2NaC104 > [00(^33(0104)3 + 2NaCl (17) 
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The Co[P(0R)3]g^'*' compounds prepared by these methods are all air-

stable over a period of hours and are stable to water. These cobalt(III) 

compounds are reduced by aqueous base, however. Addition of Et^N to an 

aqueous solution of [Co(9_)g](BF4)3, for example, results in the initially 

clear solution taking on a yellow color. The NMR spectrum shows peaks 

due to [Co(£)5]BF4, 9, and OPfOMejg. The peaks due to free 9^and OPfOMe)] 

are in a to ̂ intensity ratio while the peak due to [Co(^)5]BF4 is much 

larger than expected (perhaps due to a shorter relaxation time). Addition 

of EtgN to a similar solution of [Co(17)fi3(BF4)^ results in only 

[Co(17)t;]BF4 and j7_ being seen, in the ^^P NMR spectrum without any 

OP(OCH2)3CC2H5 detected. It seems reasonable to suggest that the base 

serves to react with the protons formed by the oxidation of water. It has 

2 H2O > O2 + 4 H+ + 4e- (18) 

previously been reported that the addition of 2 to solutions of C0CI2 in 

the presence of stoichiometric amounts of H2O and NEtg results in the 

formation of [Co(^)g]Cl along with the concomitant oxidation of H2O 

(85). The lack of observation of 0P(0CH2)3CC2H5 is probably due to the 

poor basicity of this ligand which renders it difficult to oxidize. 

Steric and Electronic Influences in the 

Disproportionation of Co (I I) by Phosphorus Ligands 

Previously, it was known that along with constrained monocyclic and 

bicyclic phosphites disproportionates Co(II) by equation 12 (95,128). The 
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lack of reports of larger acyclic phosphites or of phosphines taking part 

in this reaction suggested that steric factors may be important since 

phosphines are as a rule larger than phosphites. It was decided to react 

Co(II) with a series of phosphorus ligands of various sizes and basicities 

in order to determine the steric as well as the electronic limits on 

phosphorus ligands which disproportionate Co(II). 

The importance of steric properties of phosphorus ligands upon their 

reaction with Co(II) is seen in the comparison of the reactivities of 2 

and its higher homolog_^. The disproportionation of Co(II) by _9 was 

rather facile. When 2 was introduced into a solution of [Co{H20)g]{BF4)2 

in acetone/2,2-dimethoxypropane, however, the immediate yellow color was 

not followed by precipitation of the Co(III) product from the solution. 

Upon stirring overnight under nitrogen, the solution reverted to its 

original red color. This result indicates that the larger size of_2 

prevents the formation of a [CoLg]^"*" complex and thus inhibits the 

disproportionation reaction. This result is similar to that reported 

earlier by Albertin, Pelizzi and Bordignon wherein it was found that 9_ 

will disproportionate Co(SCN)2 by equation 13 while reaction of 2 or 33 

resulted in the formation of the Co(II) complexes CofNCSjgLg and/or 

[CofNCSjL^]* (104). This result was rationalized in part in terms of the 

relative sizes of the ligands. 

It was then decided to investigate a series of 2-alkoxy-l,3,2-

dioxaphospholanes (Figure 6) in the disproportionation reaction. These 

ligands are expected to have similar electronic properties but varying 
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Figure 6. 2-Alkoxy-l,3,2-dioxaphospholanes 
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steric sizes depending on the nature of the R groups placed on both the 

ring and the exocyclic position. 

When no methyl groups are substituted on the ring (R]^, Rg, R3, R4 = H 

in Figure 6), reaction 15 was found to proceed if r5 was Me, Et, jT_-Pr, 

j_-Pr, j]_-Bu or j_-Bu. When the exocyclic group was ^Bu reaction was not 

found to occur. Upon attempts to precipitate a Co(III) product by the 

addition of THF after the addition of_44 to a solution of [CofDMSOjg]^*, a 

reddish solid fell from solution. Attempts to observe a ^^Co NMR signal 

in the crude reaction mixture failed. Reaction of j;3[led to similar 

results. 

It was also found that ^ and ̂  did not drive reaction 15. Although 

the exocyclic group in 4^ is smaller than in ^and the size of the 

exocyclic group in_4^is comparable to the selenium-phosphorus 

coupling constants in the corresponding selenides of ^and 4^ (1035 Hz 

and 1039 Hz, respectively) show them to be poorer bases than the 2-alkoxy-

1,3,2-dioxaphospholanes which disproportionate Co(II). The selenium-

phosphorus coupling constants for the corresponding selenophosphates of 

2-alkoxy-l,3,2-dioxaphospholanes which disproportionate Co(II) are in all 

cases smaller than 1010 Hz. It will be shown that the bicyclic phosphites 

17, and 22? which are poorer bases than 4^and ̂  do disproportionate 

Co(II). Thus, it can be concluded that and _4^ do not disproportionate 
V 

Co(II) owing to a combination of steric and electronic effects. 

When methyl groups are placed in trans positions on the ring in a 2-

alkoxy-l,3,2-dioxaphospholane (Rj = R4 = H, R2 = r3 = Me in Figure 6), 

reaction 15 proceeds if R5 is Me, Et or jv-Pr but not J_-Pr, showing that 



www.manaraa.com

87 

placing methyl groups on the ring serves to place a smaller limit on the 

size of the exocyclic group which can be placed on the ring and still 

drive the reaction. When the five-membered ring is tetrasubstituted with 

methyl groups as in 5^, the reaction will not proceed even when Rg is Me. 

It is rather surprising in this context that 4,6-dimethyl-l,3,2-

dioxaphosphorinanes react with Co(II) considering the expected steric 

demands of the methyl groups on the ring. The compounds 

and [Co(72)g](BF/|)3 have previously been reported in the literature, 

however (95). A method was needed to study the stereochemistry at 

phosphorus of these ligands. Reisse and co-workers have demonstrated that 

13 C NMR spectroscopy can be used as a stereochemical probe of 2-methoxy-

1,3,2-dioxaphosphorinanes (132) in that the resonance for the methine 

carbons in _71 was 3 ppm upfield of that in 2^. Likewise, ^JPC in_7^ (13.5 

Hz) is significantly greater than in 2L (4.2 Hz) (132). 

1 ? 
The ^ C NMR results for the 4,6-dimethyl-l,3,2-dioxaphosphorinanes 

studied here confirm the results of Reisse and show the aforementioned 

criteria also to be valid for 2-methoxy-4-methyl-l,3,2-dioxaphosphorinanes 

(Table 15). In the Co(III) complexes of these ligands, the diagnostic 

carbon is the methoxy carbon. . For axially substituted substituents on 

phosphorus; the position of the methoxy carbon is approximately 4 ppm 

downfield from that in which the group is in an equatorial position, 

assuming that the ligands coordinate with retention of configuration. 

Stereoretentive coordination of 71 and 72 in cis-Mo(C0)4Lg complexes has 

been shown previously (133,134). 
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Table 15. NMR chemical shifts and 13c_31p coupling constants (in parentheses) of 2-methoxy-
1,3,2-dioxaphosphorinanes, their [CoLg]J* complexes and some sulfide derivatives® 

Compound C-çh3 och3 OCH C-ÇH2-C OCHg 

21 22.6(2.5) 49.9(18.3) 65.6(2.5) 42.7(4.9) 

11 23.9 48.7(11.9) 70.5 41.9(13.5) ---

2A. 23.2 49.9(17.1) 66.5 36.4(4.9) 60.4 

75 
1 - 1 

S(ax-CH30)POCH(CH3)eqCH2CH20 

23.2 49.3(14.7) 70.2(3.7) 33.9(11.0) 59.3 75 
1 - 1 

S(ax-CH30)POCH(CH3)eqCH2CH20 22.5(9.8) 54.2(4.9) 77.7(8.5) 33.7(6.1) 68.7(8.6) 

S(eq-CHgO)POCH(CH3)eqCH2CH2Ô 22.2(8.5) 55.6(6.1) 77.3(6.2) 33.9(6.1) 67.8(4.9) 

[Co(7D6]3+ 22.5 59.0 80.1,82.lb 41.1 

[CO(72)6]3+ 22.2 54.7 79.6 41.1 — — — 

22.7 59.2 80.6 33.6 71.2 

[Co(75)5]3+ 22.8 54.6 80.6 34.2 71.2 

®In ppm downfield of Me^Si measured in cd3cn. 

'^Resonances are of equal intensity. 
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It was found, however, that addition of NaBH^ to a ch3cn solution of 

[Co(73)g]3+ in the presence of Sg results in the formation of the 

thiophosphates of_7^ andin equal amounts as shown by NMR (Table 

15). Reduction of [Co(75)g]3+ g similar manner resulted in only the 

formation of the corresponding thiophosphate of_75. It should not be 

concluded that the Co(III) complex prepared by the reaction of 73 by 

equation 12 is necessarily coordinated to both and_7^ since it is not 

known if the sulfides were made in a stereospecific process. 

No method was developed to monitor the stereochemistry of the Co(I) 

complexes of 1,3,2-dioxaphosphorinanes. Yarbrough reports that oxidation 

of [Co(71)g]BF/| and [Co(72)g]BF^ with produced the corresponding 

phosphates of 2Land H.''" 16/84 and 11/89 ratios, respectively (135), and 

suggests that the molecular formulas of these complexes which were based 

on the orientation of the reactant phosphite may not truly reflect the 

orientation upon coordination. It must be remembered that although N2O4 

is known to stereoretentively oxidize phosphites to phosphates (126), it 

has not been proven that N2O4.will stereoretentively oxidize coordinated 

phosphites. 

No Co(III) compound could be isolated from the reaction of 25 by 

reaction 12, This is unexpected since the cone angle of the 25 is 

expected to be less than 21 and _7^ which do form Co(III) complexes. An 

answer to this apparent paradox can be found by the use of molecular 

models which show that the hypothetical [Co(25)g]3+ ion would experience 

severe steric crowding no matter what the conformation of the ligand. If 

25 were to coordinate in a boat conformation, unfavorable interactions 
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would be expected between the axial C-methyl group of the ligand and the 

cobalt atom, whereas if the ligand coordinates in a chair conformation, 

models show contacts between the equatorial methyl groups and an adjacent 

ring. Introduction of 2^to a solution of CCo(H20)g](BF4)2 in 

acetone/2,2-dimethoxypropane results in a yellow solution. No Co(III) 

product precipitates, however, and likewise no NMR could be observed 

in a spectrum taken of the crude reaction mixture. Although no Co(I) 

compound could be crystallized from this reaction, a NMR of the 

material obtained after evaporation of solvent and washing with Et20 

showed a peak at 149 ppm which is assigned to [Co(25)s]BF4 by comparison 

to the shifts previously observed in [Co(71)g]BF^ and [Co(72)g]BF/| which 

were also at 149 ppm (135). A number of peaks were observed in the 

upfield region of the NMR with the largest being at 3 ppm. Only a 

very small peak was observed at -7 ppm, the resonance reported for 

(0)CH3P0CH2C(CH3)2CH20 (136). It appears that if a phosphite is not 

sterically suited to form a hexacoordinate Co(III) complex, the Co(II) 

will be reduced to Co(I) to form [CoLg]* (with water probably being 

oxidized). Likewise, when j^is reacted with CCo(H20)g](BF4)2» the 

solution turns yellow but no Co(III) compound could be isolated nor could 

it be observed in a ^®Co NMR spectrum of the crude reaction mixture. 

The above results show that the steric properties of a phosphite 
f 

ligand can determine whether a phosphite ligand will disproportionate 

Co(II). It was also shown that electronic properties are important. It 

is known that acyclic phosphites are more basic than monocyclic phosphites 

which are more basic than bicyclic phosphites. It has previously been 
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shown that even the bicyclic phosphites J_8 and _7£ wi 11 disproportionate 

Co(II) (14,100). The bicyclic phosphite which is an even poorer base 

than 18 (6), was here found not to disproportionate Co(II), however. 

Addition of ^to an acetone/2,2-dimethoxypropane solution of 

[Co{H20)g](BF4)2 resulted in the solution becoming lemon yellow which is 

indicative of Co(I) being formed. No Co(III) compound could be isolated 

from this reaction nor could a ^^Co NMR signal be seen in the crude 

reaction mixture. A NMR spectrum taken of the crude reaction mixture 

shows peaks of 157 and 170 ppm in the region where signals due to [CoLg]+ 

complexes are usually found as well as a peak at 106 ppm due to free 

ligand and several peaks from 10-60 ppm, a region in which P=0 compounds 
i \ 

are usually found. It has been noted that both 2^_and 0P(0CH2)2CH0 are 

extremely sensitive to water (51). No ^%o NMR signal could be observed 

in the crude reaction mixture. Addition of ^to a solution of 

[Co(DMS0)g](BF4)2 in acetonitrile resulted in the solution taking on a 

yellowish-brown color. A ^Ip NMR of this crude reaction mixture showed 

multiple peaks in all regions of the spectrum. It has previously been 

suggested that PF3 fails to form a Co(III) complex because the basicity of 

the ligand is too poor to neutralize the charge on the Co(III) (102). The 

results obtained here indicated that the minimum of phosphorus lone pair 

basicity which is needed to disproportionate Co(II) lies between 18 and 

26. The addition of the arsenite esters 6{^and ^as well as the fluoro-

phosphite 5^ to solutions of [Co(H20)g](BF4)2 brought about no changes in 

color of the solution which is also attributed to the poor basicity of 

these ligands. 
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On the other hand, the failure of phosphines to disproportionate 

Co(II) was attributed to their poor ir acceptor behavior (102). In view of 

the previous results, it was thought that this inability may also be due 

to the larger steric requirements of phosphines as compared to phosphites. 

However, addition of_78 (a phosphine which Tolman reports to have a 

smaller cone angle than 9_ (1)) to a solution of [Co(H20)g](BF4)2 resulted 

in the solution taking on a blue color. Reaction witha phosphine 

which recent evidence indicates has phosphite-like electronic properties 

(137,138) gave the same result. The failure of ̂  to disproportionate 

Co(II) may also be due to its relatively large cone angle, 132° (9). 

It was also found that ligands with P-S and P-Cl bonds do not drive 

reaction 12. Introduction of ^or ̂ to a solution of [Co(H20)g](BF/^)2 

results in a green color, while the introduction of pci3 or _37 to a 

solution of CCo(DMS0)g](BF/^)2 resulted in a blue coloration. 

Although the monodentate phosphonites 5^ and 5^ were found not to 

disproportionate CCo(H20)g](BF4)2, it was previously reported that the 

bidentate phosphonites 30 and 3^^do so (101). It was also found herein 

that the diphosphonite 6^ will react in a similar manner. In an attempt 

to prepare another complex of the type [CoLg]^*, the liqand 58 was 

synthesized. When ^ was added to a solution of CCo(H20)g](BF4)2 in 

acetone 2,2-dimethoxypropane, the solution became yellow, but 

unfortunately no Co(III) complex could be isolated from this reaction or 

observed in the ^®Co NMR spectrum. Similar results were obtained when the 

monodentate ligand 47_was reacted with [Co(H20)g](BF4)2. The 

comparatively poor ligand properties of compared to ̂  are also shown 
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by the fact that reaction of excess with W(CO)g under photolytic 

conditions resulted in the formation of W(C0)/|(58) while King found that 

WfGSjgfCO)? could be formed under the same reaction conditions (123). 

As another test of the importance of steric and electronic effects of 

phosphorus ligands on the disproportionation of Co(II), 9 and 17 were 

simultaneously reacted with CCo(H20)g](BF4)2. Ten molar equivalents of 

each ligand were reacted with [Co(H20)g](BF4)2 after which the Co(III) and 

Co(I) products were separated. Integration of the peaks in the NMR of 

the Co(III) product showed 65% of the ligands complexed to Co(III) to be 

_9. The Co(I) was analyzed by integrating the peak at 150 ppm in the 

NMR spectrum corresponding to coordinated 9, against the peak at 138 ppm 

due to coordinated l]_ (135). To the extent that the relaxation times of 

the coordinated phosphorus in2.andJ7 are nearly the same, this analysis 

showed 85% of the ligands complexed to Co(I) to be JT. These results 

indicate that electronic effects dominate steric effects in the 

distribution of ligands in this reaction. It has been quite well 

established that the bicyclic ligand _17 is a poorer base than the acyclic 

_9_because of orbital constraint of the esteratic oxygens (6). In this 

instance, it appears that because the better it accepting properties of 17 

better stabilize the lower oxidation state of Co(I) and the more 

electropositive better stabilizes the more acidic Co(III), the most 

effective collisions between Co(II) species leading to electron transfer 

are those in which the Co(II) intermediate is coordinated to a higher 

proportion of the more electronegative 17 gain an electron. If steric 

factors were dominant, the opposite result would have occurred with the 
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smaller Co(III) ion preferring to coordinate to the less sterically 

demanding 17. 

Catalytic Transesterification of Monocyclic Phosphite 

Esters During the Disproportionation of Co(II) 

When an attempt was made to react 44 with Co(II) by equation the 

S^Co NMR spectrum of the Co(III) product isolated showed 6 peaks which 

appeared at -720, -804, -879, -990, -1080 and -1157 ppm in an approximate 

intensity ratio of 1:4:7:5:3:1, respectively. This result indicated that 

at least two types of ligand were coordinated to Co(III). The gated 

decoupled NMR of the Co(III) product showed a methine carbon at 80.6 

ppm, methylene carbons at 70.3 and 69.7 ppm and methyl carbons at 52.1 and 

24.1 ppm suggesting that a portion of the ligands had undergone 

transesterification with the methanol formed by the dehydration of 

[Co(H20)g](BF4)2 with 2,2-dimethoxypropane. This was confirmed by . 

reducing the Co(III) complexes with NaBH^ in the presence of Sg to form 

the thiophosphates of ^ and 41^ The two thiophosphates were not 
1 O oi 

separated but a C and a P NMR spectrum of the mixture contained peaks 

corresponding to authentic samples, and low resolution mass spectra showed 

both parent ions. 

The proportion of transesterified ligand coordinated to Co(I) was 

greater than to Co(III) in this instance. When 4J_was reacted with Co(II) 

by equation 12, integration of the NMR showed that approximately 40% of 

the ligands coordinated to Co(III) are 27 while the ^^P NMR of the Co(I) 
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from this reaction shows two peaks in a 3:1 area ratio at 168.2 and 165 

ppm corresponding to coordinated 2?_and 4^, respectively. 

When 10 molar equivalents ofand 10 molar equivalents of 41 were 

added to [Co(DMS0)2](BF4)2, however, the NMR spectrum showed the Co(I) 

to be coordinated to the two ligands in equal amounts while integration of 

the NMR of the Co(III) showed 84% of the coordinated ligand to be 2n_ 

and 16% to be 41. It would seem reasonable that steric effects are of 

importance here since only a small amount of the larger 41 ligand 

coordinated to the smaller Co(III) ion. Support for this conclusion comes 

from evidence of significant ligand-ligand repulsion in [Co(41)g](BF/[ 

which will be discussed later. This last result possibly suggests that 

transésterification affects the ligand distribution in the products since 

in the absence of transesterification the Co(I) was coordinated to a 

higher proportion of _4U It must be remembered, however, that reactions 

12 and 14 are carried out in different media. 

A number of additional experiments were performed to prove that 

transesterification by methanol was occurring. Whenwas reacted by 

equation 14, the ^^Co NMR of the cobalt(III) product obtained showed only 

one peak at -724 ppm while the gated decoupled NMR showed peaks 

corresponding to coordinated 4^ (Table 16). Unfortunately, [Co(41)s]BFA 

1 ? could not be obtained pure from this reaction. A C NMR spectrum taken 

of a crude reaction mixture from which the cobalt(III) had been separated 

showed no methoxy carbons, however, and only one peak (165.7 ppm) was seen 

in the downfield region of the NMR spectrum. 
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Table 16. NMR chemical shifts and coupling constants (in 
parentheses) of 1,3,2-dioxaphospholanes their cobalt complexes 
and some sulfide derivatives 

CH CHg. CH3 

27 65.1(9.8) 49.8(7.3) 

SMe0P0CH2CH20 67.9 56.0(4.9) 

[Co(27)6](BF4)3 --- 69.7 52.1 

[Co(27j5]BF4 67.1 52.6 

iâ --- 65.1(8.6)b 
52.9(9.8) 

17.4(4.9) 

[CO(38)6](BF4)3 — 70.4b 16.0 [CO(38)6](BF4)3 
69.5 

[CO(38)5]BF4 . — — — 66.9b 16.0 [CO(38)5]BF4 
65.1 

41 67.0(13.4) 66.4(8.6) 24.2 

S(i_-Pr0)P0CH2CH2CI 75.9(4.9) 67.7 21.3(4.8) 

[Co(41j6](BF4)3 81.1 70.3 24.1 

[CO(4],)5]N03 70.7 66.4 10.5 

39. 65.1 (8.7) 
65.1 (8.7) 
25.1(3.7) 

10.5 

[Co(_^5](BF4)3 —  — —  74.3 9.6 [Co(_^5](BF4)3 

ammmmt 

70.4 
23.9 

IL 69.8(7.3) 54.3(13.4) 14.3(4.9) 
67.3(7.3) --- 7.8(6.1) 

[Co(^)g](BF4)3 85.2 70.2 16.6 [Co(^)g](BF4)3 
--- --- 16.0 

48a,48b 73.8(9.7) 70.3(7.3) 49.1(11.0) 
72.3(8.5) 69.5(8.6) 19.6(4.9) 

18.8 

[00(^5] (BF4) 3 80.7 75.6 58.0 
17.4 

^In ppm downfield from SiMe^. Measured in CD3CN. 

^Ring carbons. Assigned on the basis of peak intensity. 
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When was reacted with CCo(DMS0)5](BF4)2 in acetonitrile in the 

presence of added methanol, both the Co(III) and the Co(I) products 

obtained contained transesterified ligand. Added ethanol did not 

transesterify however. 

Transesterification also occurred upon the reaction of other 2-

alkoxy-lj3,2-dioxaphospholanes with [Co(H20)5](BF4)2 by reaction 

Reaction of by equation 12 led to complete transesterification 

of the ligands in both products as determined by NMR. When 39 was 

reacted by equation 12, the Co(III) isolated did not contain any 

transesterified ligand as determined by NMR spectroscopy, but 58% of 

the ligands complexed to Co(I) were ̂  as shown by NMR. No 

transesterification was seen by NMR spectroscopy in the Co(III) or 

Co(I) compounds isolated when_38 was reacted with CCo(H20)5](BF4)2. 

Similarly, it was found that [00(^)5](BF4)3 and [Co(51)s]BF4 can be 

prepared by reaction _1^, but when was reacted in this manner the 

Co(III) was coordinated to both j#_and ^as shown by NMR. The 

monocyclic six-membered ring phosphite_7^ also undergoes 

transesterification upon reaction with Co(II). A NMR of the Co(III) 

product obtained after the reaction of 21 by equation 13 consisted of a 

methine carbon at 80.4 ppm, methylene carbons at 71.2, 33.9 and 32.9 ppm 

and methyl carbons at 59.0, 54.9 and 22.5 ppm. The peaks at 33.9 and 32.9 

were of about equal intensity as were the peaks at 59.0 and 54.9 ppm. The 

positions of the latter peaks suggest the presence of two types of metho%y 

carbons indicative of the simultaneous ligation of both 73 and 75 to 

cobalt(III) (Table 15) and the absence of ligated _76.. Apparently complete 
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phosphorus. Because the cobalt(I) complexes from this reaction resisted 

purification, and NMR spectroscopy were fruitless. Thus, the 

extent of transesterification could not be determined. 

A possible mechanism for the transesterification of 21 when reacted 

with Co(II) by equation 12 which results in coordination of both 73 and 75 

is shown in Figure 7. This mechanism assumes that methanol attacks 76 

while it is coordinated to Co(II) and the leaving group in a trigonal-

bipyramidal intermediate departs from an axial position as described by 

the Westheimer rules (139). Methanol may attack the most sterically open 

site to form intermediate A or may attack in a backside manner with 

respect to the O-jv-Pr group (most likely by a MeOH which was previously 

coordinated to Co(II)) to form intermediate B. Intermediate B can also 

result from intermediate A following a series of four pseudorotations 

(Figure 8). 

In contrast, the NMR spectrum of the Co(III) product obtained 

after the reaction of the isomeric phosphite 74_consisted of a methine 

carbon at 80.6 ppm, methylene carbons at 71.4, 70.9, 33.9 and 24.5 ppm, 

and methyl carbons at 22.8 and 10.8 ppm, which showed that 

transesterification did not occur in the Co(III) product. In a similar 

manner, no transesterified ligand was shown to be coordinated to Co(I) on 

the basis of the NMR spectrum which showed a methine carbon at 71.0 

ppm, methylene carbons at 67.7, 63.8, 34.5 and 24.2 ppm, and methyl 

carbons at 22.9 and 10.8 ppm. 
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Figure 7. Possible mechanism of transesterifi cation of 76 
upon reaction with Co(II) by equation 12 
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Figure 8. Series of pseudorotations which isomerize a 
coordi nated 1,3,2-di oxaphosphori nane 
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The reason for the differences which occurred upon the reaction of 

the two isomeric phosphites 7^_and 7^ may be of either a steric or an 

electronic nature. It has been shown that for monocyclic phosphites the 

positive charge on phosphorus is greater when the lone pair of electrons 

is in an equatorial as opposed to an axial position (6). On this basis, 

would be expected to undergo nucleophilic attack by methanol more 

readily than 21. The reason that_76 transesterifies when reacted with 

Co(II) by equation 12 and does not may well be due to some rather 

subtile steric effects which are not readily apparent. 

Experimental evidence suggests that the transesterification which 

takes place is definitely catalyzed and takes place before the electron 

transfer process. Solutions 0.87 M in Aland 2.6 M in MeOH monitored by 

and NMR showed no noticeable transesteri fi cation over the period 

of 15 minutes, while the reaction of [Co(H20)g](BF4)2 with ̂  is complete 

within 15 seconds. Experiments performed wherein [Co(41)fi](BF/L)^ or 

[Co(41)c;]BF4 were stirred with MeOH resulted in no transesterification. 

In another experiment, a large excess of NaBH^ was added to a solution of 

[60(4^5](BF4)3 in the presence of MeOH. The solution first became green 

for a period of about 5 seconds then became yellow and was quickly 

filtered. The [Co(41)s]BFa which was recovered in this reaction in 44% 

yield showed no evidence of transesterification in the NMR. This 

result suggests that either electron transfer by disproportionation is 

necessary for transesterification to occur, or that the lifetime of the 

Co(II) species in the reduction was too short to permit 

transesterification. It was previously reported that the reaction of the 
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b1cyclic phosphite with [Co(H20)5](N03)2 results in the formation of 

[Co(18)s]N0i without any [Co(18)G](N0i)q being observed (14). The reason 

for the anion dependence of the reaction was not determined. Reaction of 

41_with [Co(H20)5](N03)2 in acetone/2,2-dimethoxypropane solution resulted 

in an 80% yield of [Co(41)s]N03 based on the Co(II) present. The NMR 

spectrum of this compound showed only peaks corresponding to coordinated 

41 (Table 16). This result shows that either electron transfer by 

disproportionation is necessary for transesterification to occur as 

suggested earlier or that the nitrate ion is somehow inhibiting 

transesteri fi cati on. 

When an excess of_41 was reacted with [Co(H20)g](BF4)2, analysis of 

the NMR spectrum of the unreacted ligand revealed the presence of ^ 

in addition toThis result indicates that transesterification happens 

before electron transfer since the Co(I) and Co(III) products are not 

labile for the required ligand exchange in this case. The previous 

experiments suggest the possibility that electron transfer by 

disproportionation may be necessary for transesterification to occur but 

this point remains ambiguous. For electron transfer to take place, two 

ligated Co(II) species need to come in contact. The transesterification 

may serve to relieve steric crowding in the transition state. Support for 

this conclusion comes from the result that the extent of 

transesterification increased with increasing size of the exocyclic group 

when 1,3,2-dioxaphospholanes were reacted by equation 12. 

A number of experiments were performed to see if transesterification 

could be observed without Co(II) being present. It was at first 
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mistakenly thought that may somehow be rearranging upon reaction with 

Co(II). It was thus decided to make a complex of Pt(II) by equation 19-

Pt(cod)L2 > cis-Pt(41)91? (19) 

In this reaction no redox chemistry takes place and no methanol is present 

so, as expected, ^Ip, and NMR all showed that only intact ^ 

molecules were complexed to platinium. In another experiment, 10 

equivalents of 41were stirred with a 0.03 M solution of ZnCl2 in EtgO in 

the presence of 10 equivalents of MeOH forV2hour. Although a weak 

interaction between the Zn(II) and added phosphite is to be expected, no 

evidence was seen for transesterification in the NMR upon recovery of 

the phosphite. 

The reaction of phosphites with [Ni(H20)g](BF4)2 by reaction 20 when 

performed in acetone/2,2-dimethoxypropane is similar to reaction 12 

[Ni(H20)6](C104)2 + 5L > [NiL53(C104)2 (20) 

in that a phosphite is reacted with a metal cation which has been 

dehydrated with 2,2-dimethoxypropane. When was reacted by equation 20, 

none of the ligands complexed to Ni(II) were transesterified as shown by 

and 31p NMR. 

S^Co NMR Studies of Ligand Field and Ligand 

Conformations in [Co(P)6]3+ Complexes 

As expected, larger variances in chemical shift were seen in the ^%o 

NMR of [Co(P)6]3+ complexes than in the and ^^Nb NMR studies 
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reported by Rehder and coworkers (107). For example, the difference 

in S^^Co between [Co(2)6]^^ and [Cofl?)^]^* wherein the ligands in both 

complexes are phosphites is nearly 950 ppm while the difference in 

chemical shift'between the phosphite complex, CpV(C0)3(^), and the 

phosphine complex, CpV(00)3(4^), is only 246 ppm. The trend cited by 

Rehder of a decrease in metal atom shielding with decreasing ligand pi 

acceptor ability and increasing ligand bulkiness is also seen in the 

[Co(P)6]3+ complexes. 

Previously, it was reported that the trend among phosphorus ligands 

to exhibit stronger ligand fields and hence higher field ^^Co NMR chemical 

shifts in Co[P(0R)3]5^"''complexes was _9 < _n < _7^ < _27^ < which, except 

for the reversal of 7^parallels their decreasing basicity (95). 

The rise in ligand field with decreasing a basicity was postulated to be 

due to either increased n acidity or a decrease in 1igand-1igand 

repulsion. Supporting evidence for the dominance of it  acidity effects is 

the monotonie rise in energy of the lowest d-d transition with decreasing 
pj J. 

charge in two series of phosphite complexes NiLg; , C0L5 and FeLg 

(140). In the absence of a m acidity effect, 10 Dq is expected to rise 

with metallic charge. 

A more complete analysis of this question herein shows that steric 

properties of phosphite ligands are indeed of importance In determining 

the effective ligand field in [Co(P(0R)3)g]3+ complexes. Evidence for the 

importance of steric effects comes from investigation of complexes of 2-

alkoxy-l,3,2-dioxaphospholanes (Figure 6). These ligands were found to 

have nearly identical electronic properties as shown by the selenium-
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phosphorus coupling constants of the corresponding selenophosphates (Table 

17), but vary in steric size. When the ring is unsubstituted (Ri, Rg, Rg, 

R4 = H in Figure 6), a small but steady downfield shift is obtained upon 

increasing the size of R5 from Me to Et to n_-Pr and m-Bu (Table 17). When 

the exocyclic group is enlarged to _i_-Pr, a large downfield shift is 

observed. It would seem that placing an iso-propoxy group in the 

exocyclic position results in a significant increase in ligand-ligand 

repulsion. Support for this postulate comes from the fact that 

[Co(43)fi](BF/L)^ and [Co(44)fi](BFA)-^ (wherein the exocyclic group is even 

larger) were not formed in detectable amounts in reactions 12 or 15. It 

was thought that if R5 was J_-Bu, the ligand-ligand repulsion should be 

less than when R5 was _i_-Pr since the bulky CH(CH3)2 moiety is further away 

from phosphorus in the former case. Indeed, the ^^Co NMR chemical shift 

of [Co(42)fi](BF4)3 lies between that of [Co(27)R](BF4)i and 

[Co(4i)6](BF4)3 (Table 17). 

As seen in Table 17, two peaks,were observed in the ^^Co NMR spectrum 

of [Co(39)fi](BF4)3 and [00(40)5](BF4)3. The two peaks were found to be 

temperature dependent with the upfield peak being favored at low 

temperature. The difference in frequency between the two peaks when 

measured under these conditions (ca. 1 x 10^ Hz) indicates that an 

exchange rate of 7 x 10^ Hz would be needed to merge the two peaks (141). 

The differences in energy between the configurations which correspond to 

the two peaks were found to be rather small. The thermodynamic parameters 

for the conversion from the low energy peak to the high energy peak, aH = 

5 Kcal/mole and AS = 15 cal/mole K for [Co(39)f;](BF4)-^ and AS = 6 
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Table 17. Spectroscopic data for [Co(P)g]3+ complexes and 
selenated ligands 

IjSeP of 

L JSeP, Hz 

P(0Me)3 1 -352 340 954C 

eq-CH30f0CH(CH3)eqCH(CH3igqCHgO 7^ -443 337 949C 

aX-CH3OPOCH(CH3)eqCH(CHs^gqCHgO 21 -433 339 996C 

eq-CH30P0CH(CH3)gqCH2CH26 7^ -612 333 94ld 

ax-CH30P0CH(CH3)eqCH2CH20 _73 -512 337 978^ 

ax-n_-Pr0P0CH(CH3)gqCH2CH2Ô 7£ +332 350 980 

Me0PUCH2CH20 _27 -1202 317 1008 

Et0P0CH2CH20 38_ -1182 317 1000 

njPrP0CH2CH20 _39 -1008,-1160 324 1003 

_n_-BuP0CH2CH20 4^ -993,-1172 324 1003 

j_-PrP0CH2CH20 -724 335 1003 

jjBu^0CH2CH2Ô 4^ -908 327 1001 

d]jMe0P0CH2CH3CH2CH30 _50 -1085 323 998 

^-Et0P0CH2CH3CH2CH30 ^ -1013 327 996 

_^-n_-Pr0P0CH2CH3CH2CH30 ^ -694 337 997 

^In ppm from aqueous KgCCofCNjg]. Measured in CD3CN at 25° unless 
otherwise indicated. 

^Wavelength in nm of T^g <—A^g transition measured in CD3CN unless 
otherwise indicated. 

^Reference 7. 

J. Stec, Z. Naturforsch. 29B, 109 (1974). 
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Table 17. (Continued) 

L xb OSeP, Hz 

CH30POCH2CH(CH3)Ô_48 -1187 318 1004,1005® 

ÇH2OPOCH2CH2ÇHO 70_ -1598 n.o.f 1047 

P(0CH2)3CC2H5 jj_ -1296 n.o.f 

P(0CH2)3CCH3l8 -1308 n.o.f'9 IO53C 

P(0CH)3(CH2)3 69 -1201 310 1020 

o_-(P(0Me)2)2C6H4 30 -2107 n.o.f 

o.-(P(0Et)2)2C6H4ii -2060 n.o. f - - -

(MeO)2PCH2CH2p(OMe)2 68 -2050 n.o.f 

(CH3)2PCH2CH2P(CH3)2i2 +1250h 385h . 

®The two coupling constants correspond to the selenides of 48a and 
48b. 

^Obscured by charge transfer band. 

^Previously the T^q -t- Aj^q transition in an aqueous solution of 
[Co(1^)5](CI04)3 was estimated by gaussian analysis to be at 325 nm (14). 

^Measured in DMSO. 

Kcal/mole and AS = 18 cal/mole K for [Co(40)A](BF4)q were calculated by 

measuring peak areas at various temperatures (Table 18). These estimates 

are rather crude and the precision is probably no better than ±20%. ^^C 

NMR spectra of these complexes showed only one set of peaks. The reason 

for seeing two ^^Co NMR peaks for these complexes is still obscure 
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Table 18. Configurational equilibrium data for [00(39)^]^"*" and 
[CO(40)6]^ 

[Co(_^6]3+ Co[(40}6]3+ 

JL i.^area downfield peak^ 1^ i.^area downfield peak^ 
T ^ ' larea upfield peak J T ^ ' Urea upfield peak J 

3.92 X 10-3 -1.41 3.77 X 10-3 -1.75 

3.70 X 10-3 -0.97 3.63 X 10-3 -1.32 

3.50 X 10-3 -0.59 3.51 X 10-3 -1.19 

3.38 X 10-3 -0.15 3.36 X 10-3 -0.49 

r = 0.991 r = 0.975 

AH = 5 Kcal/mole AH = 6 Kcal/mole 

AS = 15 cal/mole K AS = 18 cal/mole K 

although a possible explanation comes from the examination of molecular 

models. CPK models indicated that the only way to arrange six of these 

five-membered ring monocyclic phosphites is as shown in Figure 9. In this 

arrangement, the Co(III) is capped above and below by two layers of three 

ring oxygens in each layer. The ion is also belted by two layers, each 

layer consisting of alternating ring and exocyclic oxygens. As seen in 

Figure 9, the two equatorial layers can be arranged so that the exocyclic 

groups nearly eclipse (B) each other or are staggered (A). It is probable 

that [Co(^)g](BF^)2 (for which only one ^^Co peak is observed) adopts 
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Figure 9. Possible rotameric configurations of a [CoLg]^^ ion 
where L is a monocyclic phosphite ester. P atoms 
coordinated to Co are not shown 
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arrangement A wherein the bulky exocyclic groups are as far away from each 

other as possible. In [Co(39)f;](BF4)-^ and [Co(4^g](BF/^)2 wherein the 

ligands are less sterically demanding, A and B can possibly exist in 

equilibrium. Nonbonded interactions between the four-atom and five-atom 

exocyclic chains on phosphorus and nearby ligand moieties in 

[Co(39)fi](BFa)'^ and [Co(40)K](BFA)T, respectively, may serve to slow down 

interconversion, which requires the rotation (perhaps simultaneous) of 

three Co-P bonds. Consistent with this model is the fact that the 

downfield peaks in the ^^Co NMR for [Co(32)g](BF/^)2 and [Co(40)fi](BF4)-^ 

which probably correspond to the species wherein there is a greater amount 

1igand-1igand repulsions are favored at higher temperatures. In contrast, 

®^Co NMR spectra of [Co(41)fi](BF4)-^ and [Co(38)p;](BF4)-^ (wherein rotamers 

A and B may be in rapid equilibrium due to the smaller size of the 

exocyclic group) obtained over the temperature range of -33°C to 70°C 

showed no noticeable differences in appearance. 

When methyl groups are placed on anti positions on the ring in a 

2-alkoxy-l,3,2-dioxaphospholane (R^ = R4 = H, R2 = R3 = Me in Figure 6), 

it is seen that when R5 is Me or Et the ®^Co NMR shift of the [CoLg]^* 

complex is more than 100 ppm downfield of the corresponding commplexes in 

which the ring is unsubstituted. This is probably due to the slightly 

greater steric demands of the substituted ligand. When R5 is changed to 

jT_-Pr in the ring-disubstituted ligands, a large downfield ®^Co shift is 

seen which shows that placing two methyl groups on the five-membered ring 

decreases the size of the exocyclic substituent which will induce a large 

downfield shift. 
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The 2-alkoxy-l,3,2-d1oxaphospho1ane 48 can exist in two possible 

configurations 48a and 48b wherein the metho)^ group can be either ci s or 

trans to the ring methyl group. The cobalt(III) product obtained from 

OMe 

48a 

p/ \ 

OMe 

48b 

the reaction of a 2:1 mixture of the two isomers 48a:48b with 

[Co(H20)g](BF4)3 showed one peak in the ^^Co NMR spectrum. Likewise, only 

one set of peaks was seen in the NMR spectrum of the Co(III) product 

(Table 17). It should be noted in this regard that only one type of 

methine and ring methyl carbon are also seen in the NMR of [Co(51)fi]^"^ 

where two might be expected, as is seen in the free ligand (Table 17). 

The evidence tends to suggest that the Co(III) product obtained from 

this reaction is actually a mixture of Co(III) coordinated to various 

ratios of 48a and 48b. Reduction of the Co(III) complex with NaBH^ in the 

presence of Sg produced the two thiophosphates of 48a and 48b which were 

identified on the basis of their NMR shifts at 87.5 and 90.1 ppm, 

respectively, which matched the shifts of authentic samples. It must be 

remembered, however, that sulfuration of coordinated phosphites has not 
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been shown to be stereospecific and in fact it probably is not in the case 

discussed on p. 89. In another experiment, a 2:1 mixture of 48a and 48b 

was added to a solution of [Co(H20)5](BF/^)2 in a 11:2 molar ratio. This 

resulted in the appearance of two peaks in the NMR at 166.5 and 169.0 

ppm with the upfield peak being of slightly greater intensity due to the 

coordination of the two possible isomers to Co(I). It thus seems that 

both 48a and 48b do in fact coordinate to Co(III) upon the reaction of a 

mixture, but S^Co NMR spectroscopy is not sensitive enough to distinguish 

compounds of the type [Co(48a)p(48b)A_n]^*. It would not be unexpected 

that the steric and electronic properties of 48a and 48b are similar such 

that the effective ligand field of a mixed set of isomers is the same as a 

set of either isomer. Support for the assumption that the electronic 

properties of 48a and 48b are similar comes from the closeness of the 

selenium-phosphorus coupling constants in the corresponding . 

selenophosphates of the two ligands (Table 17). It is not obvious why any 

sort of preference of Co(III) for either isomer should exist. 

Evidence for the influence of electronic properties of phosphite 

ligands in determining the ligand field of [Co(P(OR)3)5]^"*" complexes can 

also be observed. The ^%o chemical shifts of [Co(P(0R)3)g]3+ complexes 

of ligands which are less basic tend to be upfield. It must be remembered 

that in addition to becoming less basic upon constraint, phosphites become 

less sterically demanding. It is seen that the ^®Co chemical shifts of 

[Co(41)fi3^"*" and [Co(52)^]3+ lie upfield of [Co(2)63^^ although the ligands 

in the former two complexes presumably have larger cone angles. The 

upfield position of the ^%o peaks in the case of the cyclic ligands must 
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therefore be due to their lower a basicity and presumably greater % 

acidity. 

Remeasurement of ô^^o of [Co(72)g](BF4)^ and [Co(_n)g](BF/^)2 again 

resulted in the chemical shift of the complex of the more basic ligand 

appearing upfield. Likewise, the relative ^^Co NMR chemical shifts of the 

Co(III) complexes of the isomeric phosphites were the opposite 

as would be expected from basicity arguments. Caution must be taken in 

rationalizing the trends in ^%o chemical shifts of these ligands. These 

six-membered ring phosphites can complex in various conformations of the 

six-membered ring, which will have differing steric demands and electronic 

characteristics. 

Interestingly in this regard, it was found that reacting the 

unsubstituted monocyclic phosphite (77) with [Co(H20)g](BF4)2 produced a 

cobalt(III) product which showed peaks in the ^%o NMR at -520, -643, -765 

and -886 ppm in an approximate intensity ratio of 2:4:3:1. The intensity 

ratios suggest that two types of ligand are complexed to cobalt. The ^^Co 

peaks were found not be temperature dependent. This result was found to 

be difficult to repeat. Three subsequent attempts to prepare 

[Co(27jg](BF/^)2 produced only a nontemperature dependent peak in the ^^Co 

NMR at -650 ppm of the Co(III) product obtained. One further attempt 

resulted in the reproduction of the initial spectrum. The NMR spectra 

of [Co(77)fi](BFa.)-^ samples which showed multiple peaks in the ^^Co NMR 

spectrum consisted of OCH2 peaks at 72.1 and 69.6 ppm in an intensity 

ratio of 3 to 1, respectively, along with och3 carbon at 56.8 ppm and C-

ÇH2-C carbon at 26.7 ppm. In a [Co(77jg](BF4)3 sample which showed only 
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one peak in the ^^Co NMR, the NMR showed three OCH2 peaks of equal 

intensity at 66.3, 68.3 and 70.7 ppm along with och3 carbon at 58.4 and a 

C-^H2-C carbon at 26.2 ppm It is possible that in the samples of 

[Co(27)g](BF4)3 in which 3 OCHg peaks are seen in the NMR that more 

than one type of configurational isomer exists but ^^Co NMR spectroscopy 

cannot distinguish between them. 

The cause of the appearance of multiple ^^Co NMR peaks in some 

preparations of [Co(77)6](BF^)3 and the absence in others has not been 

determined. In order to gain a better understanding of the complexation 

of 2-methoxy-l,3,2-dioxaphospholanes to Co(III), CPK models of these 

complexes were made. In [00(72)^3"*"^, CPK models show that placing the 

ligands in a boat conformation which preserves equatoriality of the ring 

methyls would lead to a less crowded structure in which the cobalt is 

pseudo-equatorially bound as opposed to having the ligands complex in a 

chair conformation wherein cobalt is axial. Conversely, it was found that 

for [Co(71)fi]^"'" a boat conformation for the ligand would force the Co into 

a sterically unfavorable pseudo-axial position. Both of these ions must 

adopt rotamer A (Figure 7) to avoid severe interligand steric interactions 

among the ring methyl groups around the equatorial plane in the belt of 

the complex (Figure 9). In [Co(73)K]3+, it was found that the ligands can 

complex in either a chair or twist boat conformation with the chair 

conformation perhaps being more favored. Models indicated that 75 could 

complex to Co(III) in either a chair, a boat or a twist boat 

conformation. Coordination of the ligands in the latter two conformations 

would force the cobalt into a pseudo-equatorial position. For [Co(73)fi]^"'" 
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and [Co(75)g]3+, rotamer A (Figure 9) appears to be sterically more 

favorable and three isomers can be envisioned for this rotamer. In one, 

three ring methyls from the top set of ligands are directed over the top 

of the complex with three methyl groups from the bottom set pointing down 

and under the complex. In the second isomer, one set of ligands in the 

first isomer is rotated so that the ring methyl groups face the equatorial 

plane and in the third isomer both sets of methyl groups face this plane. 

The above preferences do not apply to [Co(77)fi]^"*" in which the ligand 

is unsubstituted. Models show that the ligand can complex in a 

conformation in which the methoxy group is either axial or equatorial in a 

chair boat or twist boat conformation and could complex in either 

rotameric conformation (Figure 7). This wide range of possibilities with 

their varying steric and electronic characteristics could account for the 

multiple peaks in [Co(77)fi]^"'". The fact that only one methoxy carbon is 

seen in the NMR suggests that the ligands are bound such that the 

cobalt is either axial or equatorial with respect to the six-membered 

ring. 

The two diphosphonite ligands andhave been shown to have a 

very high ligand field on the basis of the fact that no d-d transition was 

seen in the visible range of the corresponding [CoLg]^* complex (101). 

Since the d-d band is buried in the charge transfer region of the uv, the 

ligand field of these diphosphonites could not be quantified. ®^Co NMR 

spectroscopy shows that these ligands do indeed have an extremely strong 

ligand field. In fact, the ^%o NMR chemical shift of [CofSO)^]^^ is the 

furthest upfield ever reported for a Co(III) complex. The diphosphonite 
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^ was also found to have a very high ligand field on the basis of the 

^®Co NMR shift of [Co(68)q]3+. The w acceptor abilities of the 

diphosphonitesand_68 are somewhat less than the monodentate phosphite 

j7_and quite comparable in the respect to monodentate as shown by CO 

stretches in M(C0)4(P)2 complexes (Table 19). It would seem that 

chelation provides for considerably better orbital overlap and hence a 

higher ligand field for the small (and therefore sterically sensitive) 

Co(III) ion. Such increased overlap could arise from the greatly reduced 

1igand-1igand repulsion in the octahedron which is engendered by the 

strainless connection of pairs of phosphorus atoms by aromatic rings or 

ethylene groups. 

The tris-bisphosphine complex [Co(32)i]3^ has a weaker ligand field 

than the complexes of the monodentate phosphites, however, as evidenced by 

the position of the T^g < A^g transition and the position of the ^%o 

NMR chemical shift. These results can be explained both in terms of 

steric and electronic effects. Electronically, the electron withdrawing 

OR groups on the diphosphonite ligands should make them better ir acceptors 

than the diphosphine _3^. The better tt acceptor ability of the 

diphosphonites 30, 31 and 68 as compared to the diphosphine ̂  is shown by 

the relative positions of the CO stretches of M(C0)/^(P)2 complexes (Table 

19). Sterically, molecular models show [Co(30)fi]^"'", [Co(31)G]3+ and 

[Co(68)i]3* to be rather uncrowded structures while the lability of 

[Co(32)i]3+ has been attributed to crowding twelve methyl groups around a 

small Co(III) ion (103). 
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Table 19. CO stretching frequencies in M(C0)4(P)2 complexes 

Cotrpound Solvent CO Stretching Frequency, cm"^ 

Cr(C0)4(32)® Hexane 2009m, 1921m, 1900s, 1894VS 

MO(C0)4(^3 Hexane 2020m, 1929m, 1909s, 1903VS 

W (CO) 4(^)3 Hexane 2017m, 1922m, 1902s, 1897VS 

Cr(C0)4(6^b Not specified 2025m, 1935s, 1912VS 

Mo(C0)4(M)b Not specified 2033m, 1941s, 1916VS 

Cr(C0)4(31)C Cyclohexane 2028m, 1945m, 1918s 

Mo(C0)4(31_)C Cyclohexane 2018m, 1948m, 1926s 

W(C0)4(31)C Cyclohexane 2028m, 1944m, 1921s 

cis-Cr(C0)A(9),d Hexadecane 2026, 1947, 1939, 1914 

cis-W(C0)A(9),d Hexadecane 2035, 1947, 1939, 1914 

Cr(C0)4(17)2® Halocarbon oil 2035VW , 1957sh, 1918vs 

Mo (CO)4(27}2® Halocarbon oil 2038VW , 1960sh, 1927VS 

W(C0)4(17)2® . Halocarbon oil 2040vw , 1955sh, 1913VS 

®J. A. Connor, J. P. Day, E. M. Jones and G. K. McEwen, J. Chem. Soc. 
Dalton, 347 (1973). 

'^Reference 123. 

^Reference 128. 

^R. Mathieu, M. Lenzi and R. Poilblanc, Inorg. Chem. 9, 2030 (1970). 

®J. G. Verkade, R. E. McCarley, D. G. Hendricker and R. W. King, 
Inorg. Chem. 4, 228 (1965). 
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A 59co NMR spectrum of the Co(III) product obtained from the 

simultaneous addition of 10 molar equivalents of ^and j^to an 

acetone/2,2-dimethoxypropane solution of [Co(1420)5](BF4)2 shows peaks at 

-1026, -872, -854, -719, -696 and -530 ppm (Figure 10, Table 20). By 

running reactions at extreme ratios of 9_and_17, seven approximately 

equally-spaced resonances with two being split into two peaks were 

observed. The peaks were assigned as [Co(9)v(17)fi_Y]^"*" in order of 

Table 20. ^^Co NMR chemical shifts of [Co(17)v(9)fi_v](BF-^)3 

Compound 6^^Co (ppm) 

[Co(17)6](BF4)3 -1308 

[Co(17)5(9)](BF4)3 -1175 

cis/trans-[Co(17)a(9)?](BFa)q -1026 

mer-[Co(17)T(9)q](BF4)i -872 

fac-CCo(17)3(i)3](BF4)3 -857 

trans-[Co(17),(9)4](BF4)q -719 

çii-CCo (17)2 (1)4] (BF4)3 -696 

[Co(17)(9)5](BF4)3 -530 

[Co(i)6](BF4)3 -345 
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[Co(9) cj*/trAn)-[Co(9)2(12)4] 3+ 

59 
Figure 10. Co NMR spectrum of the Co(III) product obtained upon simultaneously reacting 

10 equivalents of 9 and of j7 to one equivalent of [CofHgOjgjfBF^ig 
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increasing x. This is not unreasonable in view of the fact that samples 

which were shown to have a higher proportion of 2 by NMR showed a 

higher proportion of the downfield ^^Co NMR peaks. In a similar type of 

system, it was found that ô^^Nb for a mixed set of hexahaloniobates can be 

predicted to a good approximation by equation 21 below (142). 

^calcd " ? ^NbClg" ^ g ^NbBrg" (^1) 

In previous work, it was suggested that the ^^Co NMR shifts in compounds 

of the type [CoAj^Bg,^] are additive (143,144). Substantial deviations 

from the "Rule of Additivity of Ligand Effects" on ^^Co NMR shifts were 

later found (145). These deviations were especially significant if inter

action between coordinated ligands could occur as in the case of NOg" 

complexes. Assignments of cis-trans and fac-mer isomers were made on the 

basis of the point charge model of Yamasaki e;^al_ to determine the 

relative electric field gradients (EFG) at the centers of [CoA^Bg,*] 

complexes (146). This model predicts that [CoAg] and fac-[CoAqBi] 

complexes will have an EFG of 0, [c0a5b] and cis-[CoAaB?] complexes will 

have an EFG of 2 units, mer-[CoAiBi] will have an EFG of 3 units while a 

trans-[CoA?Ba] commplex will have an EFG of 4 units. This type of model 

has been previously used to account for the ^^Nb NMR linewidths in mixed 

[NbClj^Brg-x]" species (147). It has also been found that for the series 

Mo(C0)g_p(9_)p, the sharpest lines are seen in the ^^Mo NMR spectrum where 

n = 0 and 6 or for the fac isomer where n = 3 (148). In the 

Co[(9)y(17)K_v]3+ system, well-resolved couplings were only seen where x = 

0 and 6 and for one of the isomers where n = 3, which is assigned as the 
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fac isomer» The ci s and trans isomers were assigned on the basis of the 

general rule that the ^^Co NMR signals of trans isomers are upfield of the 

corresponding ci s isomers (144) in addition to the electric field gradient 

arguments above (146). 

The Co(I) complexes which were formed in reactions 12 and 14 are 

transparent in the ^^Co NMR region due to the large electric field 

gradients at the ^%o nucleus of these complexes. The [CoLg]^ complexes 

where L is a bidentate phosphonite are of interest since in these 

complexes only two of the three ligands can be bidentate. The NMR 

spectrum of [Co(68)i]BFa consisted of a resonance at 215 ppm due to bound 

ligand as well as a peak at 189 ppm due to uncoordinated phosphorus. The 

peak assignments were made on the basis of intensities. This shows that 

any exchange between coordinated and uncoordinated ligand is slow on the 

NMR time scale. The NMR of this complex was very complex and could 

not be readily interpreted even when observed at 300. MHz. On the basis of 

NMR spectroscopy [Co(30)i]BF^ was also found to be nonexchanging. The 

OCH3 resonance of this complex consisted of a broad multiplet along with a 

sharp doublet (^JPH = 11.8 Hz) in an intensity ratio of 5 to 1 (101). 

Relaxation Effects in Octahedral Cobalt(III) Complexes 

For nuclei of I > 1, relaxation can occur via interaction between the 

electric quadrupole moment and asymmetries in the electric charge 

distribution. This interaction, called quadrupolar interaction, is the 

dominant relaxation mechanism for nuclei of I > 1 (109,149). 
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For the case of rapid molecular tumbling and axial symmetry of the 

molecular electric field, theory gives 

«1, = «a, • ̂  Tc 

where R^q and Rgq are the rates of spin-lattice and spin-spin relaxation 

due to quadrupole interactions, respectively, and % is the molecular 
2 

correlation time. The (^^•-) term, which is referred to as the quadrupole 

coupling constant, consists of the nuclear quadrupole moment Q, the 

electric field gradient q, and the fundamental constants e and h. For 

species which are highly symmetrical, such as [NMe^]*, the electric field 

gradient is small, the rate of quadrupolar relaxation is slowed and hence 

Jl and T2 become longer, since in systems where quadrupolar relaxation is 

the dominant mechanism of relaxation, Tj^ = T^^ = R^q = R2q-

Experimental evidence indicates that it is improper to treat the B 

atoms in tetrahedral ab4 molecules and octahedral ABg molecules as point 

charges. For example, an effective electric field gradient of eq = -0.15 

X 10^5 esu was estimated for TcO^" in aqueous solution (150). The 

broadening of the inner lines of the ten line ^^0 NMR multiplet of this 

ion is due to scalar interaction with an atom undergoing quadrupolar 

relaxation (151). Furthermore, the T^ values of ^^Co measured for a 

series of octahedral complexes at 8.08 MHz in aqueous solution are 0.103 

sec in KgCotCN)^, 5.0 x 10'^ sec in [Co(NH3)g]Br3 and 9.0 x 10"^ sec in 

[Co(en)3]Cl3. These values indicate that there is a finite electric field 

gradient at cobalt in these complexes (152). The electric field gradient 
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seen in a presumably octahedral complex is thought to be caused by 

asymmetric vibrations (152,153). In ionic octahedral Co(III) complexes, 

it has also been shown that Tj of ^^Co can also be decreased by increasing 

ionic association (154,155).• 

The effect of the symmetry of the ligands on the shape of the NMR 

spectra of tetrahedral [CuL^]* complexes where Lisa phosphite has also 

been noted. Natural abundance copper consists of two isotopes (Table 21) 

which, like ^^Co, are both quadrupolar. Wroblewski prepared complexes 

where L is the levoratory enantiomer of_70 or of racemic 73. He noted 

that he could observe phosphorus-copper coupling in the NMR of 

Table 21. NMR properties of G3cu and 65cu 

Isotope Natural Abundance Spin Magnetogyric ratio Quadrupole 
Moment 

% y/10^ rad T"^ sec Q/10-28 m2 

"cu 67.09 3/2 7.0904 -0.16 

65cu 30.91 3/2 7.5958 -0.15 
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[Co(70)4]+ (S = 124.5, Ij31p63/65cu = 1230 Hz), but the ^Ip nMR where L 

was the less symmetric ligand 7^ consisted of a broad resonance at 125.5 

ppm (Wi/2 = 1108 Hz) (100). 

The Tj values of ^^Co in six [Co(P(0R)3)g](BF4)3 complexes were 

measured to see what effect the symmetry of the ligands might have on this 

parameter. In two of these complexes, ([(00(^)5](BF4)3 and 

[Co(17)3fi(BF^)-^), the ligand possesses c3 symmetry while in the other four 

complexes investigated, ([Co(^)g](BFz^)3, [Co(38)6](BF/^)3, [Co(75)fi](BF/L)-^ 

and [Co(4jJg](BF4)3), the ligands do not possess c3 symmetry. It is seen 

in Table 22 that the complexes of the more symmetric ligands have Tj 

values which are longer by an order of magnitude than the complexes of the 

less symmetric monocyclic phosphites. This result shows that asymmetries 

in the ligands in these [Co(P(0R)3)g]3* complexes do have an effect on the 

electric field gradient at ^®Co. Even in [Co(17)g](BF/|)3, where the 

ligands are constrained to 63^ symmetry, the 4-fold symmetry of the 

octahedron is broken. These results indicate that in Co(III) complexes, 

the ligands cannot be considered point charges and that the 

symmetry of these ligands can have profound consequences on the electric 

field gradient at ^^Co. 

As the temperature of an acetonitrile solution of [Co(17)fi3^"*" is 

raised from 240K to 343K, the T^ of ^^Co increases by a factor of 7.3. 

This is due to a decrease in molecular correlation time. As seen in 

equation 22, the rate of quadrupolar relaxation is proportional to the 

molecular correlation time. As the temperature is raised in solution, the 

time between molecular collisions will shorten and any asymmetries in the 
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Table 22. Tj of ®^Co in [Co(P)g]^"*' complexes and ^%o NMR linewidths^ 

Compound Temp, K Ti(^^Co), s ^ , Hz Wiy2(^^Co), Hz 
ir T^( Co) 

[CO(17)6](BF4)3 240 l.O X 10-3 

[CO(17)6](BF4)3 275 2.8 X 10-3 

[CO(17)6](BF4)3 298 3.6 X 10-3 8.8 X loi 8.0 X loi 

[CO(J7)6](BF4)3 343 7.3 X 10-3 

[CO(9_)6](BF4)3 275 1.4 X 10-3 2.3 X 102 1.7 X 102 

[Co(38)6](BF4)3 275 1.5 X 10-4 . 2.1 X 103 2.8 X 103 

[CO(41)6](BF4)3 275 2.3 X 10-4 1.4 X 103 2.3 X 103 

[CO(2^6](BF4)3 275 1.9 X 10-4 1.7 X 103 2.9 X 103 

[00(75)5] (BF4)3 275 7.7 X 10-5 4.1 X 103 ca. 5 X 103 

^Measured in CD3CN. 

electron distribution will be smoothed out more efficiently. An increase 

in Tj with increasing temperature has previously been noted in aqueous 

solutions of [Co(NH3)g]3+, [Cofen)^]^* and [Co(CN)g]^" (155). 

Although [CoLg]3+ complexes where L is a phosphite have long been 

known, there exist no reports in the chemical literature of the NMR of 

these complexes although Yarbrough, in his Ph.D. dissertation, did report 

the 31p NMR spectra of [Co(9J6](BF4)3 and [Co(17)6](BF4)3 (135). These 

spectra,, which were measured in aqueous solution at 36.4 MHz, were 
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extremely broad. It was found that these complexes were only sparingly 

soluble in H2O, but were very soluble in ch3cn. It was also thought that 

sensitivity could be improved by taking measurements at a higher field 

since in principle NMR sensitivity should increase quadratically with 

field strength (109). It was found that NMR spectra of [Co(P)g]3+ 

complexes could be readily observed in concentrated ch3cn solutions at 

121.5 MHz (Table 23). 

A treatment of the appearance of the NMR spectrum of spin 1/2 nuclei 

coupled to quadrupolar nuclei was put forth by Pople (156). According to 

this treatment, the shape of the spin 1/2 resonance is determined by the 

dimensionless parameter n shown below 

n = lOirTjJ (23) 

where is the spin-lattice relaxation time of the quadrupolar nucleus 

and J is the scalar coupling constant. 

For the spectra of nuclei of spin 1/2 coupled to a nucleus of spin 1, 
2 o ' • 

if n = lOr, the spectra should consist of a three line pattern of 

intensity ratio 2:3:2. The NMR spectrum of measured by Ogg and 

Ray was of this form (157). As n is decreased, the theoretical spectrum 

broadens and eventually becomes a narrow peak as n approaches 1. 

For the limiting case of a [Co(P)6]3* molecule in which the 

phosphorus ligands are point charges (electric field gradient at ^^Co is 

0), the NMR will be an octet of intensity ratio 1,7,21,35,35,21,7,1. 

Conversely, when the electric field gradient at ®^Co is very large, as in 

a trigonal-bipyramidal [Co(P)5]^ complex, the disturbance of the ^^Co 

nucleus is so rapid that the transitions of the ^^P nucleus cannot be 
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Table 23. NMR data for [Co(P)g]3* complexes^ 

gSlpb Wl/2' Hz 

[CO(9)6](BF4)3 110.5 ça. 3OOOC 

[Co(17jg](BF4)3d 113.1 80® 

[00(30)3](BF4)3 173.5 937 

[00(32)3](BF4)3f 45.2 ca. 1300 

[Co(27)6](BF4)39 131.4 ca. 1700 

[Co(38jg](BF4)39 136.2 ç̂ . 2100 

[CO(39)6](BF4)3 130.4 ca. 1700 

[Co(iO}6](BF4)3 130.8 ca. 1700 

[CO(41)6](BF4)39 121.2 225 

[Co(4^6](BF4)3 122.8 ca. 2000 

[Co(48)6](BF4)3 132.9 886 

[CO(^6](BF4)3 1-26.5 ĉ . 2000 

[CO(51)6](BF4)3 128.2 814 

[CO(^6^(BF4)3 120.4 312 

[60(68)3] (BF4)3 189.1 ca. 1700 

[CO(71)6](BF4)3 101.0 c±. 2100 

[00(72)5](BF4)3 101.9 ça. 2000 

[CO(73)6](BF4)3 104.5 ç̂ . 2000 

[00(74)5](BF4)3 100.8 554 

[00(7^5] (BF4)3 107.5 ç̂ . 2000 

^Measured in ch3cn at 298K unless otherwise indicated. 

^In ppm downfield from 85% h3po4. 

^Broad plateau approximately 3000 Hz wide at half height. 

^Measured at 70°C. 

eljCo-P = 411 Hz. 

^Measured in DMSO. 

^Measured at 2°C. 
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associated with a particular state of the ^^Co nucleus. For example, the 

linewidth of [Co(17)t;]BF4 (42 Hz in CH3CN at 25°K) is much narrower 

than that of [CofP)^]^* complexes (Table 23). 

The shape of the NMR resonance of [Co(17)fi]^"*' in acetonitrile, 

measured at ambient temperature is that of a broad plateau. Raising the 

temperature and hence the T^ on ^^Co results in the eight-line pattern 

shown in Figure 11. From the theory of Pople, the appearance of a spinV2 

nucleus coupled to a nucleus of spin 7/2 where the amount of quadrupolar 

broadening is less than the magnitude of the spin-spin coupling will be as 

an eight-line pattern of intensity ration 1.00,0.538,0.582,0.700,0.700, 

0.582,0.538,1.00 as drawn in Figure 12. This pattern has also been 

observed in the spectrum of [CofNHg)̂ ]̂  ̂ (158) and the NMR 

spectrum of [CotCN)^]^" (154). 

The experimental spectrum obtained here and the two aforementioned 

spectra verify the theory of Pople for spin 1/2 nuclei coupled to spin 7/2 

nuclei. This type of analysis has also been used to explain the spectrum 

of other spin-1/2 nuclei coupled to a quadrupolar nucleus (S = 3/2 (BF3 

and CIO3F) (159), S = 5/2 (IF?) (160-162), S = 9/2 (NbFg") (163). 

The ^^P NMR spectra of the [Co(P)5](BF4)3 complexes where L is an 

unsymmetrical ligand consist of very broad lines as shown in Table 23. 

The appearance of these spectra as broad gaussian peaks as opposed to the 

broad plateau seen in the room temperature ^^P NMR of [Co(9jg](BF4)3 and 

[Co(17)f;](BF/|)3 is undoubtedly due to the smaller value of T]^ on cobalt in 

these complexes. In three complexes, the linewidths are relatively 

narrow. For example, the linewidth of the ^^P NMR of [Co(^g](BF/^)3 in 
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[Co(17)g] 

Figure 11. NMR spectrum (121.5 MHz) of [Co(17)g](BF^)g and [Co(J7)g]BF^ at 70° in CD^CN 
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Figure 12. Calculated I NMR of hypothetical SI^ molecule where I has 
spin 1/2, S has spin 7/2 and. the quadrupolar broadening of 
I is less than the 0 coupling 



www.manaraa.com

132 

CHgCN at 275K is 225 Hz while the linewidth of [Co(38)g](BF/|,)3 measured 

under the same conditions is c^. 2100 although the shape of this peak is 

somewhat flattened at the top. The reason for the smaller linewidth in 

[Co(41)fi](BF^)n is due either to a smaller of cobalt in this complex or 

reduced cobalt-phosphorus coupling. Measurement of the of of 

these complexes shows the former explanation not to be valid (Table 22). 

The increase in ligand-ligand repulsion in [Co(^)g](BF/^)g compared to 

[Co(38)fi3(BF^)-^, which was previously seen to affect the ligand field of 

this complex, probably results in an increase in the cobalt-phosphorus 

bond length which will decrease the cobalt-phosphorus coupling. 

Previously, a correlation was found between ^J^^®Pt-^^P and platinum-

phosphorus bond length for platinum complexes of trialkylphosphines 

(164). The decrease in platinum-phosphorus coupling with increasing bond 

length was attributed to either a reduction in covalency of the Pt-P bond 

or to a reduced contribution of the platinum Gs^orbital (164). The 

S^Co NMR chemical shifts of [Co(52)fi](BF/L)^ and [Co(74)fi](BF4)-^ are also 

downfield of complexes where the exocyclic phosphorus substituent on the 

ligand is smaller (Table 17). Likewise, the ^^P NMR spectra of these two 

complexes are sharp compared to complexes where the exocyclic group is 

smaller. 

The phosphorus-cobalt couplings in [Co(38)g](BF4)3 and 

[Co(41J5](BF4)3 are not directly observable. It has been suggested that 

for Co(III) complexes of amino acids, the linewidth in the (I = 1/2) 

and mmr are related by the following equation (165) 
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Wi/2(1SN) = 21 j2/Wi/2(S9Co) (24) 

This equation was derived on the assumptions that the linewidths observed 

in the ^%o NMR are due exclusively to quadrupolar interaction and that 

the linewidths observed in the NMR are determined by scalar 

interaction (166). The first assumption made here is probably not valid 

in view of the fact that Tg of ^®Co calculated from the linewidth at one-

half height was found to be shorter than T^ in [CofNHgjgDBrg due to 

unresolved scalar interaction between and ^^Co (152). It was noted 

that decoupling of decreased the width of ^%o resonance (152). It 

will be shown that scalar interaction will not affect T^ values but will 

affect Tg relaxation times and hence NMR lineshapes (vide infra). If one 

assumes that quadrupolar relaxation dominates T^, then the linewidth of 

the NMR spectrum which would be observed if no other relaxation 

mechanisms contribute to T2 would be l/irTj^(^^Co). It was found, however, 

that the linewidths observed in [Co(27)g](BF3)3, [Co(38)fi](BF4)T, 

[Co(4jJ5](BF4)3 and [00(7^5^(^^4)3 were significantly larger 

than 1/ttT j^(®^Co) which indicates that another relaxation mechanism(s) in 

addition to quadrupolar interaction contribute to the ^̂ Co NMR 

linewidth. Since and are both of spin 1/2, equation 23 can be 

written in analogy to equation 22 

Wi/2(31P) = 21 j2/Wi/2(S9co) (23) 

By using the measured linewidth of the NMR signal and estimating 

Wl/2(^^Co) as l/mT^(^^Co), values of IjCoP of 470 and 120 Hz can be 

calculated from equation 23 for [Co(38)g](BF4)3 and [Co(41)fi](BFa.)-^, 
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respectively. Although these calculated coupling constants cannot be 

verified, the value for [Co(38)K](BF4)i, compares favorably with the 

couplings in Co(III) complexes where cobalt-phosphorus coupling is 

resolved (Table 24). It would seem reasonable to conclude that the 

anomalously narrow linewidth in the NMR of [CO(41)k](BF/)^3 is probably 

due to reduced cobalt-phosphorus coupling. 

Couplings to phosphorus should increase with increasing positive 

charge on phosphorus. The higher P-H and ^^Se-P couplings in the 

protonated and selenated forms, respectively, of bicyclic ligands as 

opposed to monocyclic phosphites have been explained in this manner (6,7). 

Similarly, metal atom couplings to bi cyclic phosphites are higher than for 

acyclic phosphites as shown in Table 25. The couplings of phosphorus to 

Co(III) in CoEPtOR)]]^^* complexes show the opposite trend in that jS^Co-

^^P values for [Co(17)fi](BF4)-^ and [Co(69)^](BF4)-^ are smaller than for 

[Co{2.)6](BF4)3 (Table 24). This result can be explained in terms of 

excitation energies. As seen in equation 4, couplings to phosphorus should 

decrease with increasing excitation energy. In the couplings to and 

^^Se, excitation energies were assumed constant and were not considered 

(6,7). Pt(0) complexes are of d^® configuration so the excitation energy 

is not a low energy d-d transition and is probably relatively constant. 

In Mo(C0)5L and W(C0)5L complexes, the magnitude of the ligand field is 

mainly determined by the carbonyls and is therefore relatively constant. 

The ligand field in [Co(2)6]^^ is considerably weaker than in [Co(17)%]3+ 

which suggests that the singlet-triplet excitation term is dominant in 

determining the cobalt-phosphorus couplings in these complexes. 
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Table 24. Phosphorus-cobalt coupling constants 

Compound ^J^^Co-^^P, Hz 

CCo(9)6](BF4)3 453+2, 443+6* 

[Co(17)6](BF4)3 411+2 

tCo(18)6](BF4)3 411+2, 412+6* 

[Co(^6](BF4)3 399+2, 404+6^ 

CCo(^)3]{BF4)3 371±6b 

CCo(31)3](BF4)3 375±6b 

CCo(^)3](BF4)3 370±10 

KCCo(PF3)4] 1222+24C 

^Reference 95. Value obtained from ^^Co NMR spectrum which was 
measured at 21.35 MHz. 

^R. Weiss, unpublished results. Department of Chemistry, Iowa State 
University, Ames, Iowa, 1978, under the direction of Dr. John Verkade. 
Value obtained from ^^Co NMR spectrum which was measured at 21.35 MHz. 

^E.A.C. Lucken, K. Noack and D. F. Williams, J. Chem. Soc. (A), 148 
(1967). 
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Table 25. One-bond coupling to phosphorus in some acyclic and bicyclic 
phosphite ester systems 

Compound Coupling, Hz 

[HP(0Me)3]+ OPH = 826^ 

[HPfOCHzigCCH]]* JPH = 8993 

SeP(0Me)3 J^^Se-P = 954^ 

SeP(0CH2)3CCH3 J^^Se-P = 1053^ 

Pt[P(0Et)3]4 Jl95pt-P = 5386C 

PtCP(0CH2)3CC2H5]4 jl95pt-p = 5836^ 

W(C0)5P(0Me)3 jlSSy.p = 393d 

W(C0)5P(0CH2)3CCH3 j183W_P = 398^ 

Mo(C0)5P(0Me)3 J^^o-P = 217±2® 

Mo(C0)5P(0CH2)3CC2H5 J^^MO-P = 211±1  ̂

^Reference 6. 

^Reference 7. 

^S. N. Sze, P. S. Pregosin, Helv. Chim. Acta 60, 1371 (1977). 

"^Y. Gultneh, Ph.D. Dissertation, Iowa State University, Ames, Iowa, 
1981. 

^Reference 148. 
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Phosphorus-cobalt couplings in [Co(30)i](BF4)q and [Co(3^)3] 

were observed by Weiss in the ^®Co NMR measured at 21.35 MHz (167). These 

complexes which have the highest ligand field of the [Co(P)g]3t complexes 

examined showed the smallest couplings which again suggests that 

excitation energies are the dominant factor in determining the relative 

couplings in [Co(P)g]3* complexes. Likewise, the cobalt-phosphorus 

coupling in [CO(68)-^](BFA)-^, a complex of very high ligand field (Table 

17), was also found to be relatively small (Table 24). When the ^®Co NMR 

of [00(^)3](BF^j3 and [Co(31)?3(BF^)-^ were remeasured at 70.85 MHz, 

cobalt-phosphorus couplings could not be completely resolved. It is not 

known at this time whether this is due to a field dependence in relaxation 

rates or differences in measurement techniques. Field dependence in ^^Co 

NMR linewidths was previously observed only in cases in which hydrogen 

bonding interactions with the solvent occurred (168,169). 

The spin-lattice relaxation times of phosphorus listed in Table 26 

tend to be shorter than previously measured values in phosphine, 

phosphinito and phosphito complexes of Pd(II), Pt(II) and Ru(II) which 

ranged from 3.0-19.0 sec (170,171). The shorter Tj values observed in 

[Co(P(0R)3)6]3* complexes are probably due to dipolar interaction between 

the S9co and ^^P nuclei, both of which have large magnetogyric ratios, 

although it must be remembered that strict comparisons of T^ values 

measured in different solvents and at different temperatures should be 

made with caution (170). The increase in T^ of ^^P with increasing 

temperature in [Co(njg](BF/^)3 also suggests the dominance of relaxation 
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Table 26. and T2 values of in [CofP)^]^* compounds® 

Compound Temp, K Ti(31p), s T2(31P), sb 

[Co(17)6](BF4)3 240 1.1 ___c 

[Co(17jg](BF4)3 298 2.1 ___C 

[CO(17)6](BF4)3 343 4.4 1.9 x 10-3 

[CO(2)63(BF4)3 275 4.2 —c 

[CO(38)6](BF4)3 275 0.9 
/id 

1.4 X 10-4 

CCO(41}6](BF4)3 275 2.6 1.4 x 10-3 

[CO(25)6](BF4)3 275 1.6 2.5 X 10-4 

^Measured in CD3CN solution. 

^Estimated by measuring peakwidth at 1/2 height. 

cpeak had the shape of a broad plateau so Tg could not be estimated 
from peakwidth. 

^Peak was slightly flattened at top so T2 is possibly somewhat longer 
than estimated. 

by a dipolar as opposed to spin-rotation mode of relaxation since the rate 

of relaxation due to spin-rotation increases with temperature (109). 

The very wide lines observed in the ^^P NMR of the [CofPfOR)])^]^^ 

complexes are due to scalar interaction between cobalt and phosphorus. 

Scalar interaction can occur between two nuclei of spin I and S (where 

I = 1/2 and S > 1/2). The interaction of spin I with S (assuming that for 

a quadrupolar nucleus, for which S > 1/2, T]^ is quite short) provides a 

mechanism of relaxation for I. 
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It has been shown that the relaxation rate of I by scalar interaction 

is of the form 

and 

R'J = 1*J_ S(S+i)IT? + Il S(S+1)|:Î \  } (25) 

where S is the spin on nucleus S, uj and wg are the lartnor frequencies of 

I and S and is the relaxation time on nucleus S (149). From 

examination of equations 24 and 25, it is seen that scalar interaction 

will effect only when uj = since the expression for approaches 0 

when the difference between these two numbers becomes large. Scalar 

interaction affecting Tj is very rare since the difference in Larmor 

frequencies between two nuclei is almost always very large as is the case 

with 59co and It is thus seen that scalar interaction between cobalt 

and phosphorus will effect T2 on phosphorus (and hence the shape of the 

NMR resonance) but will not effect T^. 
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PART III. CRYSTAL AND MOLECULAR STRUCTURE OF P(0-2,6-Ç5H3Me2)3 
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INTRODUCTION 

The amount of structural data for phosphite esters is quite limited 

since most of these compounds are liquids at room temperature. Only three 

reports of crystal structure determinations of P(0R)3 compounds have 

appeared in the literature, those being of _79. (172), _80 (173) and 81 

(174). No structural determinations of triarylphosphites have appeared 

although a substantial number of them are solids at room temperature. In 

studying the coordination properties of phosphorus ligands to silver(I) 

(Section I), it was found thatwas a solid which could be readily 

crystallized from hexanes. It was also shown that [Ag(24)9]* could not be 

isolated and was appreciably dissocated in solution. This result was 

rather surprising in view of the fact that [Ag(2)2]PFg had previously been 

isolated in the solid state (18) and the cone angle for ^ reported by 

Tolman (212°) (9) is greater than that which he reports for ^ (190°) 

(9). In order to help alleviate the lack of structural data for 

triarylphosphites and also to help make a better comparison of the steric 

requirements of _5_ and x-ray structural data for 24 were obtained. 
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EXPERIMENTAL 

The structure of ^ was solved by Iowa State University Instrument 

Services. 

A crystal of was grown by recrystallization from hexanes and was 

cut, mounted and sealed in a glass capillary to prevent hydrolysis by 

atmospheric moisture. 

Data were taken using a Syntex P2j automated four-circle 

diffractometer operating with graphite monochromated Cu Ka radiation 

(A = 1.54/8 Â) at ambient temperature. Preliminary examination of the 

crystal showed it to be trigonal with a = 14.518(5), b = 14.518(5) and 

c = 6.353(1) with 2 atoms of 24_per unit cell. A density of 1.14 g/cc was 

3 
calculated based on a cell volume at 1159.6 A . 

A variable w-scan technique was employed to measure 1717 reflection 

intensities of within a 20 sphere of 114.1° (sin 8/x = 0.544 A'^). Of 

these reflections, 414 were judged to be observed after correction for 

Lorentz polarization and background effects (F^ > 3a(F^)). Systematic 

absences (h_, J], -2h, ^ absent if _£ = 2n) identified the space group as 

P3j/c. Lattice constants were obtained by a least squares refinement of 

the precise ±20[|26|>250) measurements of 12 strong independent 

reflections. 

The programs MULTAN (175) and ALLS (55) were used to locate all of 

the nonhydrogen atoms. Two cycles of isotropic refinement of these 

positions by full matrix least squares techniques led to a conventional R 

factor of 0.094 and a weighted R factor of 0.112. On the final cycle of 



www.manaraa.com

143 

refinement, the shift/error ratios ranged from 0.73 to 3.78. The large 

amount of thermal motion prevented anisotropic refinement. The 

intermolecular bond distances (Table 27) and angles (Table 28) and final 

atomic positional and thermal parameters (Table A3) appear as indicated. 

Table 27. Interatomic distances (A) and their standard deviations 
(in parentheses) for 24 

P-0 1.649(8) 

O-Cj 1.419(16) 

C1-C2 1.482(19) 

Cj-Cg 1.352(20) 

C2-C3 1.419(21) 

C3-C4 1.433(24) 

C4-C5 1.312(23) 

G5-C6 1.443(21) 

Ge-Cg 1.528(23) 

C2-C7 1.435(23) 

G6"^8 1.528(23) 
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Table 28. Bond angles (deg) and their standard deviations 
(in parentheses) for 24 

O-P-0 97.4(4) 

P-O-C^ 116.6(8) 

O-Cj-C2 112.8(14) 

0-C1-C5 120.5(12) 

Cg-Cl-Cg 126.3(13) 

C1-C2-C3 112.8(13) 

^1~^2~^7 122.6(12) 

C2-C3-C4 120.8(15) 

C3-C2-C7 124.7(13) 

C3-C4-C5 122.1(15) 

Ci-Cg-C5 115.7(13) 

Ci-Cg-Cs 118.1(13) 

^5"^6"^8 126.1(14) 

^4"^6"^5 122.2(15) 
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RESULTS AND DISCUSSION 

A computer drawing of ^ is shown in Figure 13. The phosphorus lies 

on a three-fold special position. The dihedral angle between the plane 

formed by the phosphorus atom, the oxygen atom and and the plane of all 

of the carbon atoms in the Cj-bearing ring is 73,6° (Table 29). In the 

sterically hindered phosphine _5, the average dihedral between each phenyl 

ring and the plane defined by the P-C bond and the idealized three-fold 

axis of the PC3 unit is only 44.1° (176). 

The O-P-0 angle in_^, 97.4°, is somewhat less than that previously 

reported for phosphite esters (Table 30). Conversely, the average C-P-C 

angle in _5_ (109.7°) is greater than that previously seen in simple acyclic 

phosphines. This was ascribed to the large steric demands of the mesityl 

group (173). The lack of expansion of the O-P-0 angle in ̂  shows the 

smaller steric requirement of a 0-2,6-CgH3Me2 phosphorus substituent 

compared to a mesityl group. The smaller O-P-0 angle in_24 compared to 

the other phosphite esters in Table 30 is also in accord with Bent's rule 

which states that more electronegative groups prefer hybrid orbitals with 

less s character (177). In this case, the phenoxy groups on phosphorus in 

24 are more electronegative than the alkoxy groups on phosphorus in the 

previous structures of phosphites. There is not a great deal of steric 

crowding in 24. The distance between Cy and Cg on adjacent phenyl rings 

is 4.42 A while the sum of the covalent radii of two methyl groups is 

estimated to be 4.0 A (178). 
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Figure 13. ORTEP drawing of ^ 
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Table 29. Least-squares planes in 24 

Atom dev, A Atom dev, A 

Plane 1: Ci,0,P 
0.5324X + 0.6718Y - 0.5150Z = 5.045 

Plane 2: Ci, Cp, Co, C^, Ce, Ce 
0.1290X + 0.787IY +0.60322= 4.866 

^1 0.026 C4 0.005 

Cg -0.024 C5 -0.010 

^3 0.010 

Plane 3: Ci, Co, Co, C^, Ce, Ce, C?, 
0.1088X + 0:7932Y +0.59922= 4:641 

Ce 

CR 

-0.006 

Cl 0.068 C5 0.023 

Cg -0.001 Ce -0.003 

C3 0.004 C7 -0.035 

C4 -0.011 

Plane 4: Symmetry related Co atoms 
O.OOOX + O.OOOY + l.OOOZ = 4:57 

C8 -0.045 

P -1.39 

Plane 5: Symmetry related Ci atoms 
O.OOOX + O.OOOY + l.OOOZ = 2:92 

P 0.248 

Plane 6: Symmetry related 0 atoms 
O.OOOX + O.OOOY + l.OOOZ = 2.357 

P 0.8195 

Planes Angle, deg Planes Angle, deg 

1,2 
1,3 

73.34 
73.61 

2,3 1.23 
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Table 30. Structural data for phosphite esters 

Compound POC(°) 0P0(*) P-0(A) 0-C (A ) 

11 116.6(8) 97.4(4) 1.649(8) 1.419(16) 

79^ 119.2(12) 100.7(22) 1.617(7) 1.441(10) 

80^ 117.5(4) 101.1(3) 1.615(5) 1.447(8) 

117.5(4)d 100.8(4)2 1.631(6)f 1.424(15)f 

^Reference 172. 

^Reference 173. 

''Reference 174. 

^This angle refers to the unstrained exocyclic POC linkage. 

®This is the average of the two relatively unstrained Ogxo'^^endo 
linkages. 

^This bond refers to the exocyclic oxygen. 

The P-0 bond length in ̂  is somewhat longer than in the previously 

structured phosphites (Table 30). It is possible that the electron-

withdrawing 0-2,6-CgH4Me2 group is responsible in a manner which is 

presently obscure. It is also seen that the C-0 bond length in 24 is 

shorter than the previously structured phosphites which is probably due to 

the fact that the C-0 bond in _2^ involves an aryl carbon, while the bonds 

in the other three phosphites involve alkyl carbons. 
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The structural data obtained here indicate that the Tolman cone angle 

model tends to underestimate the relative steric demands of ^compared to 

As seen in Figure 13 the P-O-C angle is oriented such that the plane 

of the three symmetry related atom lies only 0.25 A below the 

phosphorus (Table 29). This has the effect of alleviating crowding 

compared to a conformation in which the phenyl rings are more coplanar. 

However, the observed conformation increases the steric bulk of the 

ligand. Assuming a metal-phosphorus distance of 2.28 A, a C-H distance of 

1.0 A and a van der Waals radius of 1.0 A for hydrogen, a crude estimate 

of the cone angle of212°, can be calculated from a coplanar 

arrangement of the M-P-C-H bonds. When the cone angle of 24 was 

calculated by Tolman (190°), the substituents on phosphorus were folded 

back to give a minimum cone which explains the large deviation between the 

two cone angle calculations. 

The distance from the phosphorus atom to the plane formed by the 

three Cg atoms lying above the phosphorus is approximately 1.39 A. If ̂  

complexes with the same conformation it shows in the solid state in any 

linear complex of the type 24-M-24, the ligands must be in a staggered 

configuration as is seen in the solid state structure of [Ag(^)2]PF5 

(18). It has previously been found that the conformation of complexed ^ 

is similar to that of the free ligand (18,179). 

The distance between the plane formed by the methyl carbons oriented 

toward silver in [Ag(^)2]PFg and phosphorus is only 1.01 A. For 

symmetrical phosphorus ligands which have a cone angle greater than 180°, 

a "reach" parameter can be defined as the distance from the phosphorus to 
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the plane formed by the three carbons lying furthest above the 

phosphorus. The instability of [Ag(24)g]"*' may be due in part to the 

interligand repulsion caused by the larger reach of 21 (1.39 A) compared 

to^ (1.01 A). 

It has been noted that no reports appear in the chemical literature 

of complexes which contain more than two coordinated ^ligands (180). It 

would be of interest to investigate the coordination properties of 24 

toward transition metals. Perhaps it will be found that only one or two 

^ ligands will coordinate to a transition metal complex which can be 

isolated in the solid state. 

It must be remembered that because of the large amount of thermal 

motion in the structure of ^ all the bond distances and angles discussed 

are tentative. A better refinement can probably be made by taking x-ray 

data at a lower temperature. 
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APPENDIX: FINAL POSITIONAL AND THERMAL PARAMETERS FOR 
[Ag(P(NMe2)3)2]BPh4 AND PfO-Z.G-CgHgMegis 
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Table Al. Final positional parameters and their estimated standard 
deviations (in parentheses)® for CAg(P(NMe2)3)2]BPh/^ 

Atom X Y Z 

[Ag(P(NMe2)3)2]+l 

Ag 0.15492(5) 0.35297(3) 0.25956(3) 

Pi 0.2497(2) 0.3205(1) 0.3788(1) 

P2 0.0548(1) 0.4135(1) 0.1513(1) 

•^lA 0.1698(5) 0.3312(3) 0.4345(3) 

^IB 0.2848(5) 0.2279(3) 0.3904(3) 

•^ic 0.3574(5) 0.3819(4) 0.4110(3) 

0.9593(5) 0.4753(3) 0.1668(3) 

•^28 0.9990(5) 0.3529(3) 0.0861(3) 

0.1349(4) 0.4721(3) 0.1168(3) 

^1 0.0776(7) 0.2738(6) 0.4311(5) 

C2 0.1341(9) 0.4105(5) 0.4457(5) 

^3 0.3113(7) 0.1848(5) 0.3331(4) 

C4 0.3408(8) 0.1964(5) 0.4597(4) 

^5 0.4197(7) 0.4165(5) 0.3651(4) 

^6 0.4244(8) 0.3834(6) 0.4857(4) 

C7 0.8967(6) 0.4545(5) 0.2174(4) 

Gg 0.9001(6) 0.5354(4) 0.1167(4) 

cg 0.9289(7) 0.3818(4) 0.0168(3) 

^10 0.9623(6) 0.2757(4) 0.1024(4) 

cu 0.1943(7) 0.5362(4) 0.1624(4) 

C12 0.2166(6) 0.4335(4) 0.0828(4) 

^Positional parameters are listed in fractional unit cell 
coordinates. 
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Table Al. (Continued) 

Atom X Y Z 

BICgHs),-! 

B 0.6210(6) 

Cl 0.6055(5) 

02 0.6328(5) 

h 0.6149(6) 

C4 0.5693(6) 

5̂ 0.5410(6) 

6̂ 0.5587(6) 

C7 0.6571(5) 

Cg 0.7248(6) 

Cg 0.7593(7) 

1̂0 0.7272(8) 

1̂1 0.6622(8) 

C12 0.6285(6) 

1̂3 0.4961(6) 

Ci4 0.4865(7) 

1̂5 0.3791(8) 

1̂6 
0.2790(3) 

1̂7 
0.2823(7) 

1̂8 
0.3897(6) 

0̂ 9 0.7249(6) 

2̂0 
0.7044(7) 

C21 0.7933(10) 

C22 0.9077(10) 

C23 0.9319(7) 

C24 0.8422(6) 

0.2569(4) 0.2185(4) 

0.3362(3) 0.1717(3) 

0.3405(3) 0.1087(3) 

0.4071(4) 0.0673(3) 

0.4725(4) 0.0888(4) 

0.4709(4) 0.1501(4) 

0.4043(4) 0.1904(3) 

0.2780(4) 0.3019(3) 

0.3428(5) 0.3306(4) 

0.3590(5) 0.4009(4) 

0.3100(7) 0.4471(4) 

0.2460(6) 0.4219(4) 

0.2299(4) 0.3507(4) 

0.2092(4) 0.1949(3) 

0.1303(4) 0.2066(4) 

0.0900(5) 0.1862(4) 

0.1279(5) 0.1528(4) 

0.2062(5) 0.1404(4) 

0.2454(4) 0.1607(4) 

0.2036(4) 0.2042(3) 

0.1503(4) 0.1496(4) 

0.1067(5) 0.1380(5) 

0.1146(6) 0.1805(6) 

0.1665(6) 0.2339(5) 

0.2096(4) 0.2459(3) 



www.manaraa.com

166 

Table Al. (Continued) 

Atom X Y Z 

"2 0.6679 0.2904 0.0932 

"3 0.6362 0.4089 0.0203 

"4 0.5558 0.5227 0.0583 

"5 0.5060 0.5210 0.1656 

H6 0.5375 0.4028 0.2373 

"8 0.7483 0.3795 0.2953 

Hg 0.8097 0.4082 0.4207 

"lO 0.7530 0.3219 0.5008 

"Il 0.6387 0.2091 0.4572 

"12 0.5782 0.1806 0.3309 

Hi4 0.5649 0.1017 0.2322 

"15 0.3748 0.0308 0.1955 

"16 0.1992 0.0984 0.1373 

"17 0.2043 0.2349 0.1148 

"I8 0.3940 0.3049 0.1513 

"20 0.6179 0.1446 0.1177 

"21 0.7750 0.0669 0.0966 

H22 0.9746 0.0815 0.1712 

"23 0.0170 0.1727 0.2660 

"24 0.8603 0.2495 0.2873 
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Table A2. Thermal parameters and their estimated standard deviations®»'^ 
(in parentheses) for CAg(P(NMe2)3)2]BPh4 

Atom Bll B22 B33 B12 Bl3 ^23 

[Ag(P(NMe2)3)2]+l 

Ag 5.91(4) 6.62(4) 3.4(3) -0.04(2) 0.39(2) 1.70(2) 

Pi 4.40(8) 4.84(9) 3.09(7) -0.02(7) 0.69(6) 0.99(6) 

P2 3.99(8) 4.17(8) 2.96(7) -0.09(6) 0.74(6) 0.73(6) 

NIA 5.8(3) 5.0(3) 4.6(3) 0.2(2) 1.9(2) 0.4(2) 

NIB 6.1(3) 5.1(3) 4.2(3) 0.7(2) 1.1(2) 0.6(2) 

NIC 5.9(3) 6,4(3) 4.9(3) -1.4(3) 1.0(2) 0.9(2) 

. N2A 5.0(3) 5.8(3) 4.3(3) -0.1(2) 1.9(2) 0.2(2) 

N2B 5.2(3) 4.0(2) 4.1(3) -0.6(2) 0.9(2) 0.7(2) 

N2C 4.1(2) 4.3(2) 4.0(2) -0.1(2) 1.2(2) 0.2(2) 

Cl 6.3(4) 9.3(6) 8.4(5) -2.4(4) 3.2(4) -0.6(4) 

C2 10.9(6) 6.0(6) 9.3(6) 2.1(4) 4.6(5) 0.1(4) 

C3 7.4(5) 6 . 7 ( 4 )  7.4(5) -0.1(4) 4.0(4) -1.3(4) 

C4 9.4(6) 6.1(4) 5.4(4) 1.2(4) 0.5(4) 2.1(3) 

C5 6.1(4) 8.5(5) 7.4(5) -1.6(4) 2.4(4) 2.5(4) 

C6 9.1(6) 10.6(6) 4.6(4) -3.5(5) 0.0(4) 0.3(4) 

C7 5.5(4) 8.6(5) 5.2(4) -1.6(3) 3.1(3) -0.8(3) 

^8 5.9(4) 5.7(4) ^ 5.8(4) 1.4(3) 1.9(3) 0.8(3) 

Cg 6.4(4) 5.7(4) 3.5(3) 0.3(3) 0.0(3) 0.4(3) 

®The form of the anisotropic thermal parameter is 

exp[-(Biia*2h2 + B22b*^l<^ + B33C*^Ji^)/4 + (Bi2a*b*hk + Bi3a*c*hji + 

B23b*c*k&)/2]. 

^Isotropic thermal parameters of the hydrogen atoms were fixed at 
2 

values assigned by B|^ = (1.0 + B)A (B is the isotropic thermal parameter 

on the bonded carbon) giving Bĵ ĵ  values H2, 4.65; H3, 5.13; H4, 5.29; H5, 
5.35; Hg, 5.40; Hg, 6.22; Hg, 6.81; Hiq, 7.30; Hn, 7.13; H12, 5.56; H14, 

5.78; Hig, 6.70; 7.26; 6.87; H20, 6.26; H21, 7.90; H22, 7.21; 

H23, 6.55; H24, 5.25 
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Table A2. (Continued) 

Atom Bll ^22 B33 hz ®13 ^23 

Cio 6.3(4) 3.9(3) 6.4(4) -1.0(3) 2.4(3) 0.8(3) 

Cll 6.4(4) 6.2(4) 5.9(4) -2.2(3) 1.9(3) -1.7(3) 

^12 4.6(3) 5.8(4) 6.5(4) 1.0(3) 2.6(3) 0.21(3) 

BJCjHj)-! 

B 4.0(3) 4.1(3) 3.6(3) 0.3(3) 0.9(3) 0.2(3) 

Cl 3.3(3) 3.9(3) 3.5(3) -0.1(2) 0.6(2) 0.1(2) 

02 4.2(3) 4.2(3) 3.7(3) 0.1(2) 0.7(2) 0.2(2) 

C3 5.2(3) 4.9(4) 3.5(3) -0.3(3) 0.7(2) 0.3(3) 

C4 5.4(4) 3.8(3) 4.8(4) -0.4(3) 0.2(3) 0.8(3) 

C5 5.7(4) 3.9(3) 5.1(4) 0.3(3) 1.1(3) -0.1(3) 

^6 4.9(3) 4.2(3) 4.7(3) 0.3(3) 1.3(3) 0.0(3) 

C7 3.7(3) 5.6(4) 3.8(3) 0.7(3) 1.1(2) 1.1(3) 

Cg 4.9(3) 7.8(5) 4.0(3) -0.9(3) 0.9(3) -0.7(3) 

C9 5.5(4) 9.0(6) 5.0(4) 0.0(4) 0.1(3) -1.3(4) 

^10 6.9(5) 11.3(7) 3.5(4) 2.3(5) 0.6(3) 0.1(4) 

^11 7.6(5) 9.5(6) 3.8(4) 2.2(5) 1.7(3) 1.9(4) 

C12 5.2(4) 6.6(4) 4.5(3) 1.3(3) 1.1(3) 1.5(3) 

^13 4.6(3) 4.5(3) 3.3(3) 0.2(3) 1.0(2) 0.7(2) 

Ci4 6.1(4) 4.7(4) 5.6(4) -0.2(3) 1.2(3) 1.1(3) 

Cl5 7.0(5) 5.7(4) 6.2(4) -1.4(4) 1.3(4) 0.6(3) 

^16 6.7(5) 7.5(5) 5.6(4) -2.7(4) 1.4(4) -0.1(4) 

Cl7 4.9(4) 8.2(5) 5.7(4) -0.3(4) 0.6(3) 1.6(4) 

^18 4.2(3) 5.5(4) 5.3(3) 0.0(3) 0.9(3) 0.8(3) 

Ci9 4.7(3) 4.1(3) 4.4(3) 0.7(3) 1.3(3) 1.8(3) 

^20 7.0(4) 4.7(3) 5.4(4) 1.2(3) 2.3(3) 0.3(3) 

C21 10.0(6) 5.3(4) 8.6(6) 2.1(5) 4.5(5) 0.7(4) 

^22 9.6(7) 6.6(5) 10.3(7) 4.5(5) 6.4(6) 4.6(5) 

C23 5.5(4) 7.6(5) 7.8(5) 2.5(4) 3.0(4) 3.6(4) 

C24 5.1(4) 5.8(4) 5.1(4) 0.9(3) 1.8(3) 1.9(3) 
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Table A3. Final positional^ and thermal parameters and their estimated 
standard deviations (in parentheses) for PfO-Z.G-CgHgMeg)^ 

Atom X Y Z Biso. / ' 

P 0.6667 0.3333 0.5000 5.8(1) 

0 0.6696(6) 0.2363(6) 0.3710(16) 6.3(2) 

Cl 0.7317(10) 0.1958(9) 0.4610(23) 5.6(3) 

C2 0.8284(10) 0.2232(10) 0.3367(25) 6.5(3) 

C3 0.8878(13) 0.1785(13) 0.4213(28) 8.6(4) 

C4 0.8498(13) 0.1093(13) 0.6002(28) 7.6(4) 

^5 0.7605(13) 0.0860(12) 0.6954(26) 7.4(4) 

Ce 0.6946(10) 0.1286(11) 0.6269(24) 6.4(3) 

^7 0.8584(12) 0.2902(13) 0.1539(27) 8.1(4) 

Cg 0.5867(15) 0.1016(16) 0.7190(32) 9.2(5) 

^Positional parameters are listed infractional unit cell coordinates. 
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